dc.contributor | 應數系 | en_US |
dc.creator (作者) | 李明融 | zh_TW |
dc.creator (作者) | LI, MENG-RONG | en_US |
dc.creator (作者) | YAO, HSIN-YU | en_US |
dc.date (日期) | 2013.12 | en_US |
dc.date.accessioned | 13-Jun-2014 12:00:05 (UTC+8) | - |
dc.date.available | 13-Jun-2014 12:00:05 (UTC+8) | - |
dc.date.issued (上傳時間) | 13-Jun-2014 12:00:05 (UTC+8) | - |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/66689 | - |
dc.description.abstract (摘要) | In this article we study properties of positive solutions of the ordinary differential equation $t^2u``=u^n$ for $1<n\\in\\mathbb{N}$, we obtain conditions for their blow-up in finite time, and some properties for global solutions. Equations containing more general nonlinear terms are also considered. | en_US |
dc.format.extent | 208731 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.relation (關聯) | Electronic journal of differential equations, 2013(250), 1-9 | en_US |
dc.source.uri (資料來源) | http://ejde.math.txstate.edu/Volumes/2013/250/abstr.html | - |
dc.subject (關鍵詞) | Nonlinear differential equation; Emden-Fowler equation; blow-up rate | en_US |
dc.title (題名) | Asymptotic behavior of positive solutions of the nonlinear differential equation t²u``= u{^n},1 < n | en_US |
dc.type (資料類型) | article | en |