Publications-Books & Chapters in Books

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 On Mean Shift Clustering for Directional Data on a Hypersphere
作者 郭訓志
Yang, Miin-Shen ; Chang-Chien, Shou-Jen ; Kuo, Hsun-Chih
貢獻者 統計系
關鍵詞 Clustering;Mean shift;Directional data on a hypersphere
日期 2014.04
上傳時間 13-Jun-2014 14:26:05 (UTC+8)
摘要 The mean shift clustering algorithm is a useful tool for clustering numeric data. Recently, Chang-Chien et al. [1] proposed a mean shift clustering algorithm for circular data that are directional data on a plane. In this paper, we extend the mean shift clustering for directional data on a hypersphere.The three types of mean shift procedures are considered. With the proposed mean shift clustering for the data on a hypersphere it is not necessary to give the number of clusters since it can automatically find a final cluster number with good clustering centers. Several numerical examples are used to demonstrate its effectiveness and superiority of the proposed method.
關聯 Artificial Intelligence and Soft Computing Lecture Notes in Computer Science, 8468, 809-818
資料類型 book/chapter
DOI http://dx.doi.org/10.1007/978-3-319-07176-3_70
dc.contributor 統計系en_US
dc.creator (作者) 郭訓志zh_TW
dc.creator (作者) Yang, Miin-Shen ; Chang-Chien, Shou-Jen ; Kuo, Hsun-Chihen_US
dc.date (日期) 2014.04en_US
dc.date.accessioned 13-Jun-2014 14:26:05 (UTC+8)-
dc.date.available 13-Jun-2014 14:26:05 (UTC+8)-
dc.date.issued (上傳時間) 13-Jun-2014 14:26:05 (UTC+8)-
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/66692-
dc.description.abstract (摘要) The mean shift clustering algorithm is a useful tool for clustering numeric data. Recently, Chang-Chien et al. [1] proposed a mean shift clustering algorithm for circular data that are directional data on a plane. In this paper, we extend the mean shift clustering for directional data on a hypersphere.The three types of mean shift procedures are considered. With the proposed mean shift clustering for the data on a hypersphere it is not necessary to give the number of clusters since it can automatically find a final cluster number with good clustering centers. Several numerical examples are used to demonstrate its effectiveness and superiority of the proposed method.en_US
dc.format.extent 244739 bytes-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.relation (關聯) Artificial Intelligence and Soft Computing Lecture Notes in Computer Science, 8468, 809-818en_US
dc.subject (關鍵詞) Clustering;Mean shift;Directional data on a hypersphereen_US
dc.title (題名) On Mean Shift Clustering for Directional Data on a Hypersphereen_US
dc.type (資料類型) book/chapteren
dc.identifier.doi (DOI) 10.1007/978-3-319-07176-3_70en_US
dc.doi.uri (DOI) http://dx.doi.org/10.1007/978-3-319-07176-3_70en_US