Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 從作者與發明人的關係探討技術發展各階段論文與專利活動之關聯性──以電腦視覺領域之賈伯濾波器技術為例
Discovering the Relationship between Publishing and Patenting Activities from the Relatedness of Authors and Inventors over the Life Cycles of Technological Development── Case Study of Gabor Filter in Computer Vision
作者 許舜棋
Hsu, Shun Chi
貢獻者 吳豐祥
Wu, Feng Shang
許舜棋
Hsu, Shun Chi
關鍵詞 專利分析
技術生命週期
書目計量分析
發明作者
賈伯濾波器
Patent Analysis
Technological Life Cycle
Bibliometrics
Inventor-Author
Gabor Filter
日期 2011
上傳時間 1-Jul-2014 12:05:08 (UTC+8)
摘要 在技術快速變遷的環境中,如何迅速掌握與研發相關的情報以協助研發決策的制訂,已經成為企業重要的競爭優勢來源。近年來,由於電腦運算能力的快速提昇,使用電腦輔助企業自動、快速地從大量增加的科技資訊(特別是專利和論文)中淬取出攸關的資訊,就成為了近年來產業界和學術界積極研究的目標。

在眾多方法中,使用書目計量分析和專利分析方法是最引人注目的方法之一。使用書目計量分析和專利分析可以從龐大的論文和專利資訊中,快速瞭解科技發展的動態:包括瞭解科技發展的階段為何,熱門的科技領域為何,重要的作者和企業為何等等。然而,現階段的書目計量分析和專利分析雖然可以協助瞭解科技發展的全貌,對於科技發展下技術發明活動與科學研究活動的關聯性,以及不同的科技發展階段裡發明人和作者的動態關係,卻仍然缺少相關的研究。

因此,本研究提出以下三點研究問題:
1. 不同類型的論文作者和專利發明人的科學研究/技術發明活動,與技術發展階段的關聯性為何?
2. 發明作者的技術發明/科學研究活動與一般發明人或作者的差異為何?
3. 發明作者的技術發明活動與科學研究活動關係為何?

針對以上的研究問題,本研究首先通過回顧相關文獻以建立分析發明人和作者的研究架構,再蒐集專利和論文的資料並依照架構的需要處理資料,最後進行分析與討論以得到研究結論。

本研究主要獲得以下三點研究結論:
1. 天才發明人是技術發展處於萌芽期時專利發明的要角,而關鍵發明人大多在技術發展進入成長期時才投入專利發明。至於頂尖作者,則在技術發展的萌芽期、成長期和成熟期都是論文發表的要角。
2. 關鍵發明人有很高的機會是頂尖作者,而發明作者如果不是關鍵發明人,則其專利發明的表現有略高的機會較其他發明人更差。
3. 大部份發明作者的專利發明活動在論文發表活動之後;但是關鍵發明人則較傾向先申請專利,再發表主題高度相關的論文。
Mining information to improve corporate R&D decision making had been an important source of competitive advantage in the rapid changing technological environment. Recently, extracting relevant information quickly and automatically from massive amount of technological data (especially patent and scientific publications) with the aide of computer had become an active research area for both industrial and academic researchers due to ever-growing computing power.

Among the methods of retrieving technological information, bibliometrics and patent analysis are two of the most attractive ones. Bibliometrics and patent analysis provide a quick way to capture the dynamics of technological development, including the stage of technological development, active technological research area and important researchers/corporates, etc. Although bibliometrics and patent analysis are helpful to understand the landscape of technological development, there still lacks researches about the relationship between scientific invention and research activities as well as the dynamics between patent inventors and publication authors along different stages of technological development.

Hence, this research raises the following questions:
1. What is the relation between scientific research/invention activities and technological development stages for different categories of publication authors and patent inventors?
2. What is the difference of scientific research/invention activities between Inventor-Authors and other inventors/authors?
3. What is the relation between scientific research and invention activities of Inventor-Authors?

This research reviews related researches to define a research framework connecting authors, inventors and technological development stages. Then patent and publication data are collected and processed based on the research framework. This research conclusion is made after analysis and discussion.

Conclusion of the research includes the followings:

1. "Talent Inventors" play important role when the technological development is in "Emerging" stage, and "Key Inventors" starts patent inventions after the technological development enters "Growth" stage. "Top Authors" play important role across "Emerging", "Growth" and "Maturity" stages of technological development.

2. "Key Inventors" are more probable to be also "Top Author". "Inventor-Authors" who are not "Key Inventors" are more probably to perform worse than other inventors.

3. Most "Inventor-Authors" apply for patents after papers of highly related topics are published. But "Key Inventors" tend to apply for patents before papers of highly related topics are published.
參考文獻 一、中文參考文獻

邱鳯姿(2000),「以文獻計量分析探討雲端運算技術生命之預測」,國立東華大學國際企業研究所碩士論文。
張智翔(2000),「技術預測:利用專利分析技術探討接觸式影像感測器技術擴散過程之研究」,雲林科技大學企業管理技術研究所碩士論文。
陳芷瑛(2002),「光碟及資料庫檢索常見問題集」,國立中央大學圖書館通訊,第35期。
劉淑德(2001),「專利資訊分析與應用」,國立成功大學圖書館館刊,第10期。
蔡明月(1997),「書目計量學、科學計量學與資訊計量學」,教育資料與圖書館學,第34卷第3期,頁268-284。
蔡璞(2007),技術資源規劃──技術地圖理論與實務,臺北市:鼎茂圖書。
蕭麗芬(2002),「淺論專利授權實施對競爭秩序之影響」,財團法人工業技術研究院。
賴士葆、陳松柏、謝龍發(2004),科技管理概論,臺北縣:國立空中大學。
謝銘洋、徐宏昇、陳哲宏、陳逸南(1994),專利法解讀,臺北市:月旦。
蘇紘立(2009),「探討臺灣蔬果保鮮技術發展軌跡:使用專利分析與書目計量分析法」,屏東科技大學科技管理研究所碩士論文。

二、英文參考文獻

Abernathy, W. J., & Utterback, J. M. (1978). Patterns of industrial innovation. Technology Review, 80(7), 40-47.
Agarwal, R., & Audretsch, D. B. (2001). Does entry size matter? The impact of the life cycle and technology on firm survival. Journal of Industrial Economics, 21-43
Archibugi, D., & Planta, M. (1996). Measuring technological change through patents and innovation surveys. Technovation, 16(9), 451-468.
Ashton, W. B., & Sen, R. K. (1988). Using patent information in technology business planning-I. Research Technology Management, 31(6), 42-46.
Basberg, B. L. (1987). Patents and the measurement of technological change: A survey of the literature. Research Policy, 16(2-4), 131-141.
Beed, C., & Beed, C. (1996). Measuring the quality of academic journals: the case of economics. Journal of Post Keynesian Economics, 369-396.
Boyack, K. W., & Klavans, R. (2008). Measuring science-technology interaction using rare inventor-author names. Journal of Informetrics, 2(3), 173-182.
Breschi, S., Lissoni, F., & Montobbio, F. (2007). The scientific productivity of academic inventors: new evidence from Italian data. Economics of Innovation and New Technology, 16(2), 101-118.
Callon, M. (1980). The state and technical innovation: a case study of the electrical vehicle in France. Research Policy, 9(4), 358-376.
Campbell, R. S. (1983). Patent trends as a technological forecasting tool. World Patent Information, 5(3), 137-143.
Daim, T. U., Rueda, G., Martin, H., & Gerdsri, P. (2006). Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological Forecasting and Social Change, 73(8), 981-1012.
Ernst, H. (1997). The use of patent data for technological forecasting: the diffusion of CNC-technology in the machine tool industry. Small Business Economics, 9(4), 361-381.
Ernst, H., Leptien, C., & Vitt, J. (2000). Inventors are not alike: The distribution of patenting output among industrial R&D personnel. IEEE Transactions on Engineering Management, 47(2), 184-199.
Ford, D., & Ryan, C. (1981). Taking technology to market. Harvard Business Review;(United States), 59(2).
Garfield, E. (1955). Citation index for science. Science, 122(3159), 108-111.
Garfield, E. (1972). Citation analysis as a tool in journal evaluation. Science, 178(60), 471-479.
Garfield, E. (1973). Citation frequency as a measure of research activity and performance. Essays of an Information Scientist, 1, 406-408.
Gauthier. (1998). Bibliometric Analysis of Scientific and Technological Research: A User`s Guide to the Methodology. Science and Technology Redesign Project, Statistics Canada.
Geuna, A., & Nesta, L. J. J. (2006). University patenting and its effects on academic research: The emerging European evidence. Research Policy, 35(6), 790-807.
Griliches, Z. (1990). Patent statistics as economic indicators: a survey. Journal of Economic Literature, 28(4), 1661-1707.
Guan, J., & Wang, G. (2010). A comparative study of research performance in nanotechnology for China’s inventor--authors and their non-inventing peers. Scientometrics, 84(2), 331-343.
Hall, B. H., Griliches, Z., & Hausman, J. A. (1986). Patents and R&D: Is there a lag?
Huang, M. H., Chang, H., & Chen, D. Z. (2006). Research evaluation of research-oriented universities in Taiwan from 1993 to 2003. Scientometrics, 67(3), 419-435.
Järvenpää, H. M., Mäkinen, S. J., & Seppänen, M. (2011). Patent and publishing activity sequence over a technology`s life cycle. Technological Forecasting and Social Change.
Klepper, S. (1996). Entry, exit, growth, and innovation over the product life cycle. The American Economic Review, 562-583.
Levitt, T. (1965). Exploit the Product Life Cycle. Harvard Business Review, 43(6), 81-94.
Lotka, A. J. (1926). The frequency distribution of scientific productivity. Journal of the Washington Academy of Sciences, 16(1926), 317-323.
Martino, J. P. (1982). Technological indicators of market shift. Technological Forecasting and Social Change, 21(1), 77-83.
Martino, J. P. (2003). A review of selected recent advances in technological forecasting. Technological Forecasting and Social Change, 70(8), 719-733.
Meyer, M. (2003). Academic patents as an indicator of useful research? A new approach to measure academic inventiveness. Research Evaluation, 12(1), 17-27.
Meyer, M. (2006). Are patenting scientists the better scholars? An exploratory comparison of inventor-authors with their non-inventing peers in nano-science and technology. Research Policy, 35(10), 1646-1662.
Morris, S., DeYong, C., Wu, Z., Salman, S., & Yemenu, D. (2002). DIVA: a visualization system for exploring document databases for technology forecasting. Computers & Industrial Engineering, 43(4), 841-962.
Murray, F. (2004). The role of academic inventors in entrepreneurial firms: sharing the laboratory life. Research Policy, 33(4), 643-659.
Narin, F., & Breitzman, A. (1995). Inventive productivity. Research Policy, 24(4), 507-519.
Narin, F., Olivastro, D., & Stevens, K. A. (1994). Bibliometrics/theory, practice and problems. Evaluation Review, 18(1), 65.
Norton, M. (2000). Introductory Concepts in Information Science: Information Today, Inc.
Noyons, E., Van Raan, A., Grupp, H., & Schmoch, U. (1994). Exploring the science and technology interface: inventor-author relations in laser medicine research. Research Policy, 23(4), 443-457.
Pei, R., & Porter, A. L. (2011). Profiling leading scientists in nanobiomedical science: interdisciplinarity and potential leading indicators of research directions. R&D Management, 41(3), 288-306.
Pilkington, A., Lee, L. L., Chan, C. K., & Ramakrishna, S. (2009). Defining key inventors: A comparison of fuel cell and nanotechnology industries. Technological Forecasting and Social Change, 76(1), 118-127.
Plomp, R. (1990). The significance of the number of highly cited papers as an indicator of scientific prolificacy. Scientometrics, 19(3), 185-197.
Porter, M. E. (1980). Competitive Strategy Techniques for Analyzing Industries and Competitors. New York: The Free Press.
Pritchard, A. (1969). Statistical bibliography or bibliometrics. Journal of Documentation, 25, 348.
Roussel, P. A., Saad, K. N., & Erickson, T. J. (1991). Third Generation R&D: Managing the Link to Corporate Strategy, Harvard Business School Press.
Watts, R. J., & Porter, A. L. (1997). Innovation forecasting. Technological Forecasting and Social Change, 56(1), 25-47.
Wu, F. S., Hsu, C. C., Lee, P. C., & Su, H. N. (2011). A systematic approach for integrated trend analysis - The case of etching. Technological Forecasting and Social Change, 78(3), 386-407.
Zucker, L. G., & Darby, M. R. (1996). Star scientists and institutional transformation: Patterns of invention and innovation in the formation of the biotechnology industry. Proceedings of the National Academy of Sciences, 93(23), 12709.
描述 碩士
國立政治大學
科技管理研究所
97359010
100
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0097359010
資料類型 thesis
dc.contributor.advisor 吳豐祥zh_TW
dc.contributor.advisor Wu, Feng Shangen_US
dc.contributor.author (Authors) 許舜棋zh_TW
dc.contributor.author (Authors) Hsu, Shun Chien_US
dc.creator (作者) 許舜棋zh_TW
dc.creator (作者) Hsu, Shun Chien_US
dc.date (日期) 2011en_US
dc.date.accessioned 1-Jul-2014 12:05:08 (UTC+8)-
dc.date.available 1-Jul-2014 12:05:08 (UTC+8)-
dc.date.issued (上傳時間) 1-Jul-2014 12:05:08 (UTC+8)-
dc.identifier (Other Identifiers) G0097359010en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/67086-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 科技管理研究所zh_TW
dc.description (描述) 97359010zh_TW
dc.description (描述) 100zh_TW
dc.description.abstract (摘要) 在技術快速變遷的環境中,如何迅速掌握與研發相關的情報以協助研發決策的制訂,已經成為企業重要的競爭優勢來源。近年來,由於電腦運算能力的快速提昇,使用電腦輔助企業自動、快速地從大量增加的科技資訊(特別是專利和論文)中淬取出攸關的資訊,就成為了近年來產業界和學術界積極研究的目標。

在眾多方法中,使用書目計量分析和專利分析方法是最引人注目的方法之一。使用書目計量分析和專利分析可以從龐大的論文和專利資訊中,快速瞭解科技發展的動態:包括瞭解科技發展的階段為何,熱門的科技領域為何,重要的作者和企業為何等等。然而,現階段的書目計量分析和專利分析雖然可以協助瞭解科技發展的全貌,對於科技發展下技術發明活動與科學研究活動的關聯性,以及不同的科技發展階段裡發明人和作者的動態關係,卻仍然缺少相關的研究。

因此,本研究提出以下三點研究問題:
1. 不同類型的論文作者和專利發明人的科學研究/技術發明活動,與技術發展階段的關聯性為何?
2. 發明作者的技術發明/科學研究活動與一般發明人或作者的差異為何?
3. 發明作者的技術發明活動與科學研究活動關係為何?

針對以上的研究問題,本研究首先通過回顧相關文獻以建立分析發明人和作者的研究架構,再蒐集專利和論文的資料並依照架構的需要處理資料,最後進行分析與討論以得到研究結論。

本研究主要獲得以下三點研究結論:
1. 天才發明人是技術發展處於萌芽期時專利發明的要角,而關鍵發明人大多在技術發展進入成長期時才投入專利發明。至於頂尖作者,則在技術發展的萌芽期、成長期和成熟期都是論文發表的要角。
2. 關鍵發明人有很高的機會是頂尖作者,而發明作者如果不是關鍵發明人,則其專利發明的表現有略高的機會較其他發明人更差。
3. 大部份發明作者的專利發明活動在論文發表活動之後;但是關鍵發明人則較傾向先申請專利,再發表主題高度相關的論文。
zh_TW
dc.description.abstract (摘要) Mining information to improve corporate R&D decision making had been an important source of competitive advantage in the rapid changing technological environment. Recently, extracting relevant information quickly and automatically from massive amount of technological data (especially patent and scientific publications) with the aide of computer had become an active research area for both industrial and academic researchers due to ever-growing computing power.

Among the methods of retrieving technological information, bibliometrics and patent analysis are two of the most attractive ones. Bibliometrics and patent analysis provide a quick way to capture the dynamics of technological development, including the stage of technological development, active technological research area and important researchers/corporates, etc. Although bibliometrics and patent analysis are helpful to understand the landscape of technological development, there still lacks researches about the relationship between scientific invention and research activities as well as the dynamics between patent inventors and publication authors along different stages of technological development.

Hence, this research raises the following questions:
1. What is the relation between scientific research/invention activities and technological development stages for different categories of publication authors and patent inventors?
2. What is the difference of scientific research/invention activities between Inventor-Authors and other inventors/authors?
3. What is the relation between scientific research and invention activities of Inventor-Authors?

This research reviews related researches to define a research framework connecting authors, inventors and technological development stages. Then patent and publication data are collected and processed based on the research framework. This research conclusion is made after analysis and discussion.

Conclusion of the research includes the followings:

1. "Talent Inventors" play important role when the technological development is in "Emerging" stage, and "Key Inventors" starts patent inventions after the technological development enters "Growth" stage. "Top Authors" play important role across "Emerging", "Growth" and "Maturity" stages of technological development.

2. "Key Inventors" are more probable to be also "Top Author". "Inventor-Authors" who are not "Key Inventors" are more probably to perform worse than other inventors.

3. Most "Inventor-Authors" apply for patents after papers of highly related topics are published. But "Key Inventors" tend to apply for patents before papers of highly related topics are published.
en_US
dc.description.tableofcontents 目錄 v
圖目錄 viii
表目錄 ix
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究問題 3
第三節 研究流程 4
第二章 文獻探討 5
第一節 技術發展與技術生命週期 5
一、 技術生命週期定義 5
二、 技術生命週期階段 6
三、 技術生命週期的重要性 7
第二節 書目計量分析 8
一、 書目計量分析的定義與分析方法 8
二、 書目計量分析在研發管理的應用 9
第三節 專利分析 11
一、 專利的定義 11
二、 專利分析的功能 12
三、 專利指標與技術生命週期 14
第四節 學術論文作者與專利發明人 17
一、 學術論文作者 17
二、 專利發明人 19
三、 發明作者 21
第五節 文獻探討小結 23
第三章 研究架構與方法 24
第一節 研究架構 24
第二節 研究對象與範圍 26
第三節 研究工具 28
一、 資料庫 28
二、 分析工具 29
第四節 研究步驟與參數選擇 29
一、 資料檢索 29
二、 資料格式轉換 32
三、 作者與發明人分組 32
四、 計量資料產生 33
五、 資料分析 33
第五節 研究限制 34
第四章 個案分析與結果 35
第一節 個案技術介紹 35
一、 電腦視覺(Computer Vision) 35
二、 賈伯濾波器(Gabor Filter)的發展 36
第二節 個案技術發展生命週期分析 38
第三節 個案技術論文作者和專利發明人分析 40
一、 整體趨勢 40
二、 分組人數趨勢 42
三、 分組論文與專利趨勢 44
第四節 個案技術發明作者分析 46
一、 發明作者與各組作者和發明人 46
二、 發明作者的論文發表與專利發明 48
第五章 研究發現與討論 56
第一節 作者、發明人與技術發展生命週期 56
第二節 發明作者與其他作者、發明人 59
第三節 發明作者的科學發現與技術發明 61
第六章 研究結論與建議 62
第一節 研究結論 62
第二節 管理意涵 63
第三節 後續研究建議 63
參考文獻 65
zh_TW
dc.format.extent 2020498 bytes-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0097359010en_US
dc.subject (關鍵詞) 專利分析zh_TW
dc.subject (關鍵詞) 技術生命週期zh_TW
dc.subject (關鍵詞) 書目計量分析zh_TW
dc.subject (關鍵詞) 發明作者zh_TW
dc.subject (關鍵詞) 賈伯濾波器zh_TW
dc.subject (關鍵詞) Patent Analysisen_US
dc.subject (關鍵詞) Technological Life Cycleen_US
dc.subject (關鍵詞) Bibliometricsen_US
dc.subject (關鍵詞) Inventor-Authoren_US
dc.subject (關鍵詞) Gabor Filteren_US
dc.title (題名) 從作者與發明人的關係探討技術發展各階段論文與專利活動之關聯性──以電腦視覺領域之賈伯濾波器技術為例zh_TW
dc.title (題名) Discovering the Relationship between Publishing and Patenting Activities from the Relatedness of Authors and Inventors over the Life Cycles of Technological Development── Case Study of Gabor Filter in Computer Visionen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 一、中文參考文獻

邱鳯姿(2000),「以文獻計量分析探討雲端運算技術生命之預測」,國立東華大學國際企業研究所碩士論文。
張智翔(2000),「技術預測:利用專利分析技術探討接觸式影像感測器技術擴散過程之研究」,雲林科技大學企業管理技術研究所碩士論文。
陳芷瑛(2002),「光碟及資料庫檢索常見問題集」,國立中央大學圖書館通訊,第35期。
劉淑德(2001),「專利資訊分析與應用」,國立成功大學圖書館館刊,第10期。
蔡明月(1997),「書目計量學、科學計量學與資訊計量學」,教育資料與圖書館學,第34卷第3期,頁268-284。
蔡璞(2007),技術資源規劃──技術地圖理論與實務,臺北市:鼎茂圖書。
蕭麗芬(2002),「淺論專利授權實施對競爭秩序之影響」,財團法人工業技術研究院。
賴士葆、陳松柏、謝龍發(2004),科技管理概論,臺北縣:國立空中大學。
謝銘洋、徐宏昇、陳哲宏、陳逸南(1994),專利法解讀,臺北市:月旦。
蘇紘立(2009),「探討臺灣蔬果保鮮技術發展軌跡:使用專利分析與書目計量分析法」,屏東科技大學科技管理研究所碩士論文。

二、英文參考文獻

Abernathy, W. J., & Utterback, J. M. (1978). Patterns of industrial innovation. Technology Review, 80(7), 40-47.
Agarwal, R., & Audretsch, D. B. (2001). Does entry size matter? The impact of the life cycle and technology on firm survival. Journal of Industrial Economics, 21-43
Archibugi, D., & Planta, M. (1996). Measuring technological change through patents and innovation surveys. Technovation, 16(9), 451-468.
Ashton, W. B., & Sen, R. K. (1988). Using patent information in technology business planning-I. Research Technology Management, 31(6), 42-46.
Basberg, B. L. (1987). Patents and the measurement of technological change: A survey of the literature. Research Policy, 16(2-4), 131-141.
Beed, C., & Beed, C. (1996). Measuring the quality of academic journals: the case of economics. Journal of Post Keynesian Economics, 369-396.
Boyack, K. W., & Klavans, R. (2008). Measuring science-technology interaction using rare inventor-author names. Journal of Informetrics, 2(3), 173-182.
Breschi, S., Lissoni, F., & Montobbio, F. (2007). The scientific productivity of academic inventors: new evidence from Italian data. Economics of Innovation and New Technology, 16(2), 101-118.
Callon, M. (1980). The state and technical innovation: a case study of the electrical vehicle in France. Research Policy, 9(4), 358-376.
Campbell, R. S. (1983). Patent trends as a technological forecasting tool. World Patent Information, 5(3), 137-143.
Daim, T. U., Rueda, G., Martin, H., & Gerdsri, P. (2006). Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological Forecasting and Social Change, 73(8), 981-1012.
Ernst, H. (1997). The use of patent data for technological forecasting: the diffusion of CNC-technology in the machine tool industry. Small Business Economics, 9(4), 361-381.
Ernst, H., Leptien, C., & Vitt, J. (2000). Inventors are not alike: The distribution of patenting output among industrial R&D personnel. IEEE Transactions on Engineering Management, 47(2), 184-199.
Ford, D., & Ryan, C. (1981). Taking technology to market. Harvard Business Review;(United States), 59(2).
Garfield, E. (1955). Citation index for science. Science, 122(3159), 108-111.
Garfield, E. (1972). Citation analysis as a tool in journal evaluation. Science, 178(60), 471-479.
Garfield, E. (1973). Citation frequency as a measure of research activity and performance. Essays of an Information Scientist, 1, 406-408.
Gauthier. (1998). Bibliometric Analysis of Scientific and Technological Research: A User`s Guide to the Methodology. Science and Technology Redesign Project, Statistics Canada.
Geuna, A., & Nesta, L. J. J. (2006). University patenting and its effects on academic research: The emerging European evidence. Research Policy, 35(6), 790-807.
Griliches, Z. (1990). Patent statistics as economic indicators: a survey. Journal of Economic Literature, 28(4), 1661-1707.
Guan, J., & Wang, G. (2010). A comparative study of research performance in nanotechnology for China’s inventor--authors and their non-inventing peers. Scientometrics, 84(2), 331-343.
Hall, B. H., Griliches, Z., & Hausman, J. A. (1986). Patents and R&D: Is there a lag?
Huang, M. H., Chang, H., & Chen, D. Z. (2006). Research evaluation of research-oriented universities in Taiwan from 1993 to 2003. Scientometrics, 67(3), 419-435.
Järvenpää, H. M., Mäkinen, S. J., & Seppänen, M. (2011). Patent and publishing activity sequence over a technology`s life cycle. Technological Forecasting and Social Change.
Klepper, S. (1996). Entry, exit, growth, and innovation over the product life cycle. The American Economic Review, 562-583.
Levitt, T. (1965). Exploit the Product Life Cycle. Harvard Business Review, 43(6), 81-94.
Lotka, A. J. (1926). The frequency distribution of scientific productivity. Journal of the Washington Academy of Sciences, 16(1926), 317-323.
Martino, J. P. (1982). Technological indicators of market shift. Technological Forecasting and Social Change, 21(1), 77-83.
Martino, J. P. (2003). A review of selected recent advances in technological forecasting. Technological Forecasting and Social Change, 70(8), 719-733.
Meyer, M. (2003). Academic patents as an indicator of useful research? A new approach to measure academic inventiveness. Research Evaluation, 12(1), 17-27.
Meyer, M. (2006). Are patenting scientists the better scholars? An exploratory comparison of inventor-authors with their non-inventing peers in nano-science and technology. Research Policy, 35(10), 1646-1662.
Morris, S., DeYong, C., Wu, Z., Salman, S., & Yemenu, D. (2002). DIVA: a visualization system for exploring document databases for technology forecasting. Computers & Industrial Engineering, 43(4), 841-962.
Murray, F. (2004). The role of academic inventors in entrepreneurial firms: sharing the laboratory life. Research Policy, 33(4), 643-659.
Narin, F., & Breitzman, A. (1995). Inventive productivity. Research Policy, 24(4), 507-519.
Narin, F., Olivastro, D., & Stevens, K. A. (1994). Bibliometrics/theory, practice and problems. Evaluation Review, 18(1), 65.
Norton, M. (2000). Introductory Concepts in Information Science: Information Today, Inc.
Noyons, E., Van Raan, A., Grupp, H., & Schmoch, U. (1994). Exploring the science and technology interface: inventor-author relations in laser medicine research. Research Policy, 23(4), 443-457.
Pei, R., & Porter, A. L. (2011). Profiling leading scientists in nanobiomedical science: interdisciplinarity and potential leading indicators of research directions. R&D Management, 41(3), 288-306.
Pilkington, A., Lee, L. L., Chan, C. K., & Ramakrishna, S. (2009). Defining key inventors: A comparison of fuel cell and nanotechnology industries. Technological Forecasting and Social Change, 76(1), 118-127.
Plomp, R. (1990). The significance of the number of highly cited papers as an indicator of scientific prolificacy. Scientometrics, 19(3), 185-197.
Porter, M. E. (1980). Competitive Strategy Techniques for Analyzing Industries and Competitors. New York: The Free Press.
Pritchard, A. (1969). Statistical bibliography or bibliometrics. Journal of Documentation, 25, 348.
Roussel, P. A., Saad, K. N., & Erickson, T. J. (1991). Third Generation R&D: Managing the Link to Corporate Strategy, Harvard Business School Press.
Watts, R. J., & Porter, A. L. (1997). Innovation forecasting. Technological Forecasting and Social Change, 56(1), 25-47.
Wu, F. S., Hsu, C. C., Lee, P. C., & Su, H. N. (2011). A systematic approach for integrated trend analysis - The case of etching. Technological Forecasting and Social Change, 78(3), 386-407.
Zucker, L. G., & Darby, M. R. (1996). Star scientists and institutional transformation: Patterns of invention and innovation in the formation of the biotechnology industry. Proceedings of the National Academy of Sciences, 93(23), 12709.
zh_TW