Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 家庭作業與學習成就關係之研究—以TIMSS與TEPS臺灣學生為例
The Relationship between Homework and Learning Achievements: An Example of Taiwan Students from TIMSS and TEPS
作者 陳俊瑋
貢獻者 秦夢群
陳俊瑋
關鍵詞 家庭作業時間
家庭作業頻率
學習成就
多重插補
似真值
homework time
homework frequency
learning achievements
multiple imputation
plausible values
日期 2013
上傳時間 14-Jul-2014 11:28:05 (UTC+8)
摘要 本研究旨在了解家庭作業與學習成就的關係。為達研究目的,本研究以階層線性模式分析「國際數學與科學教育成就趨勢調查」2007年4年級學生資料;2007年8年級學生資料;以及2011年8年級學生資料,接著,本研究再以結構方程模式的長期追蹤交叉延宕模式,分析「臺灣教育長期追蹤資料庫」2001年、2003年及2005年追蹤樣本學生資料,本研究主要發現:
一、臺灣4年級學生的學生層次數學家庭作業時間對數學學習成就有顯著負向地影響效果;學生層次科學家庭作業時間對科學學習成就也有顯著負向地影響效果。
二、臺灣4年級學生的班級層次數學家庭作業頻率對數學學習成就沒有顯著地影響效果;班級層次科學家庭作業頻率對科學學習成就也沒有顯著地影響效果。
三、臺灣8年級學生的學生層次數學家庭作業時間對數學學習成就有顯著正向地影響效果;學生層次科學家庭作業時間對科學學習成就也有顯著正向地影響效果。
四、臺灣8年級學生的班級層次數學家庭作業頻率對數學學習成就有顯著正向地影響效果;班級層次科學家庭作業頻率對科學學習成就也有顯著正向地影響效果。
五、臺灣2001年7年級陸續追蹤至2005年11年級的學生,其家庭作業時間與學習成就有顯著正向地相互影響效果。
This study aimed analyze the relationship between homework and learning achievements. Hierarchical linear modeling was used to analyze the 4th grade of elementary school students from Trends in International Mathematics and Science Study (TIMSS) 2007, 8th grade of junior high school students from TIMSS 2007, and 8th grade of junior high school students from TIMSS 2011. Moreover, structural equation modeling with cross-lagged panel modeling was used to analyze the core panel sample data from Taiwan Education Panel Survey (TEPS) in 2001, 2003, and 2005. The major findings were as follows:
1. Taiwan 4th grade of elementary school students’ student-level mathematic homework time could negative predict the mathematic learning achievements significantly, and student-level science homework time could also negative predict the science learning achievements significantly.
2. Taiwan 4th grade of elementary school students’ class-level mathematic homework frequency could not predict the mathematic learning achievements significantly, and class-level science homework frequency could also not predict the science learning achievements significantly.
3. Taiwan 8th grade of junior high school students’ student-level mathematic homework time could positive predict the mathematic learning achievements significantly, and student-level science homework time could also positive predict the science learning achievements significantly.
4. Taiwan 8th grade of junior high school students’ class-level mathematic homework frequency could positive predict the mathematic learning achievements significantly, and class-level science homework frequency could also positive predict the science learning achievements significantly.
5. Taiwan 7th grade of junior high school students to 11th grade of senior high school students’ homework time could positive predict the subsequent learning achievements significantly, and learning achievements could also positive predict the subsequent homework time significantly.
參考文獻 壹、中文部份
王文科(2002)。教育研究法(增訂七版)。臺北市:五南。
王彩緞(2009)。國小高年級學童家庭作業影響因素與親子互動關係之研究(未出版的碩士論文)。國立高雄師範大學,高雄市。
王鴻龍、楊孟麗、陳俊如、林定香(2012)。缺失資料在因素分析上的處理方法之研究。教育科學研究期刊,57(1),29–50。
王麗雲、游錦雲(2005)。學童社經背景與暑期經驗對暑期學習成就進展影響之研究。教育研究集刊,51(4),1–41。
任宗浩(2007a)。研究設計與資料分析。載於張俊彥(主編),TIMSS 2007 國際數學與科學教育成就趨勢調查國家報告(頁65–95)。取自http://www.dorise.info/DER/download_T2007/resault/TIMSS-2007-full_ver.pdf
任宗浩(2007b)。評量架構。載於張俊彥(主編),TIMSS 2007 國際數學與科學教育成就趨勢調查國家報告(頁11–63)。取自http://www.dorise.info/DER/download_T2007/resault/TIMSS-2007-full_ver.pdf
任宗浩、譚克平、張立民(2011)。二階段分層叢集抽樣的設計效應估計:以TIMSS 2007調查研究為例。教育科學研究期刊,56(1),33–65。
余民寧(2006)。潛在變項模式:SIMPLIS的應用。臺北市:高等教育。
余民寧、趙珮晴(2010)。選擇科學職業意圖的性別差異分析-以TIMSS 2003臺灣八年級學生為例。諮商輔導學報,22,1–29。
余民寧、趙珮晴、許嘉家(2009)。影響國中小女學生學業成就與學習興趣因素-以臺灣國際數學與科學教育成就趨勢調查(TIMSS)資料為例。教育資料與研究雙月刊,87,79–104。
余民寧、趙珮晴、陳嘉成(2010)。以社會認知生涯理論探討影響選擇數學職業意圖的因素。教育科學研究期刊,55(3),177–201。
余民寧、韓珮華(2009)。教學方式對數學學習興趣與數學成就之影響:以TIMSS 2003臺灣資料為例。測驗學刊,56,19–48。
吳心怡(2006)。國小教師設計家庭作業理念探究-以幸福國小為例(未出版的碩士論文)。國立臺東大學,臺東縣。
吳清山(1989)。國小高年級學生家庭作業現況之調查研究。臺北市立師範學院學報,20,105–141。
李宜玫、孫頌賢(2010)。大學生選課自主性動機與學習投入之關係。教育科學研究期刊,55(1),155–182。
李宜玫、陳姵穎(2010)。國小家庭作業類型的預測與中介效果:從教學風格到任務價值。教育科學研究期刊,55(4),187–213。
李春芳(1997)。教學技術。載於黃政傑(主編),教學原理(頁185–254)。臺北市:師大書苑。
李郁然(2002)。臺北市國小學生家庭作業現況之研究(未出版的碩士論文)。臺北市立師範學院,臺北市。
李懿芳、江芳盛(2008)。有效的學校領導對數學學習成就之影響:以TIMSS 2003臺灣調查資料為例。教育政策論壇,11(2),107–130。
李懿芳、江芳盛、蔡佳燕(2010)。校園安全觀感與國小學生數學及科學學業成就之相關研究。教育學刊,35,99–128。
林定香、藍信龍(2008)。缺失資料對潛在類別迴歸模式參數估計之影響。中國統計學報,46,197–212。
林尚俞(2004)。桃園縣國民小學家庭作業實施現況之研究(未出版的碩士論文)。國立新竹師範學院,新竹市。
林俊瑩、黃毅志(2008)。影響臺灣地區學生學業成就的可能機制:結構方程模式的探究。臺灣教育社會學研究,8(1),45–88。
林雅玲(2009)。基隆市國民小學學生家長參與家庭作業之實徵調查研究(未出版的碩士論文)。國立臺北教育大學,臺北市。
林鉦棽、彭台光(2006)。多層次管理研究:分析層次的概念、理論和方法。管理學報,23,649–675。
林寶山(1988)。教學原理。臺北市:五南。
洪川富(2008)。家庭作業完成時間與頻率對學習成就的影響之研究-TIMSS 2003臺灣數學科資料的階層線性模式分析(未出版的碩士論文)。國立政治大學,臺北市。
徐嘉怡(2001)。花蓮縣國民小學家庭作業施行狀況之研究(未出版的碩士論文)。國立花蓮師範學院,花蓮縣。
秦夢群、吳勁甫(2009)。國民中學教師彰權益能、學校組織健康與學校效能關係之研究。教育與心理研究,32(1),1–28。
秦夢群、吳勁甫(2011)。國中校長教學領導、學校知識管理與教師教學效能之多層次分析。教育與心理研究,34(2),1–31。
高廣孚(1988)。教學原理。臺北市:五南。
張宜君(2014)。不能停的競賽:暑期活動對中學生學業成就的影響。人文及社會科學集刊,26,63–102。
張芳全(2006)。影響數學成就因素探討-以臺灣在TIMSS 2003年的樣本為例。課程與教學季刊,9(3),151–168。
張芳全(2007)。臺灣、美國及日本之國二學生家庭作業與數學成就關係比較。教育資料集刊,34,285–316。
張芳全(2009)。家長教育程度與科學成就之關係:文化資本、補習時間與學習興趣為中介的分析。教育研究與發展期刊,5(4),39–76。
張芳全(2010)。多層次模型在學習成就之研究。臺北市:心理。
張芳全(2011)。家長教育程度、文化資本、自我抱負、學習興趣與數學成就之關係研究。臺中教育大學學報:教育類,25,29–56。
張俊彥(2007)。緒論。載於張俊彥(主編),TIMSS 2007 國際數學與科學教育成就趨勢調查國家報告(頁1–9)。取自http://www.dorise.info/DER/download_T2007/resault/TIMSS-2007-full_ver.pdf
張苙雲(2011)。臺灣教育長期追蹤資料庫:第一波(2001)、第二波(2003)、第三波(2005)、第四波(2007)資料使用手冊【2011.05.31版】。臺北市:中央研究院調查研究專題中心【管理、釋出單位】。
張郁雯(2008)。對比效應對學業自我概念之影響-發展的觀點。教育心理學報,40,23–38。
張郁雯、林文瑛、王震武(2013)。科學表現的兩性差異縮小了嗎?-國際科學表現評量資料之探究。教育心理學報,44,459–476。
張毓仁、柯華葳、邱皓政、歐宗霖、溫福星(2011)。教師閱讀教學行為與學生閱讀態度和閱讀能力自我評價對於閱讀成就之跨層次影響:以PIRLS 2006為例。教育科學研究期刊,56(2),69–105。
許文耀(2008)。國民小學學生家庭作業與學業成就關係之研究-以基隆市二所國小為例(未出版的碩士論文)。國立臺北教育大學,臺北市。
許玉雪、林建宏(2008)。插補法在不同缺失機制下之比較分析。統計與資訊評論,10,19–39。
許鐘元(2010)。國中學生自我調整學習策略、家庭作業與課業學習成就之相關研究(未出版的碩士論文)。國立高雄師範大學,高雄市。
陳依喬(2011)。臺灣八年級學生數學成就之多層次模型-以TIMSS 2007為例(未出版的碩士論文)。國立臺北教育大學,臺北市。
陳俊瑋(2010)。國中教師集體效能感、教師自我效能感及教師組織公民行為關聯之研究:多層次中介效果之分析。當代教育研究,18(2),29–69。
陳俊瑋(2011)。學生教育抱負與學習成就關係之研究:長期追蹤資料之分析。當代教育研究,19(4),127–172。
陳俊瑋、黃毅志(2011)。重探學科補習的階層化與效益:Wisconsin模型的延伸。教育研究集刊,57(1),101–135。
陳信木、林佳瑩(1997)。調查資料之遺漏值的處置-以熱卡插補法為例。調查研究,3,75–106。
陳耿睿(2011)。臺灣國小學童數學學習成就之原因比較研究:以TIMSS 2007資料為例(未出版的碩士論文)。國立臺北教育大學,臺北市。
陳敏瑜、游錦雲(2013)。以TIMSS資料檢視能力信念與任務價值對臺灣八年級學生數學成就之影響。教育科學研究期刊,58(3),153–186。
陳惠邦(2003)。德國教育制度。載於王家通(主編),各國教育制度(頁405–432)。臺北市:師大書苑。
陳嘉成(2007)。區別高低分群學生數學成就因素的國際比較-以臺灣、南韓、澳洲與賽普勒斯的TIMSS 2003學生背景資料為例。測驗學刊,54,377–402。
喬麗文(2008)。課後學習對國中生數學成就的影響-九國/地區之比較(未出版的碩士論文)。國立暨南國際大學,南投縣。
曾明基、邱于真、張德勝、羅寶鳳(2011)。學生認知歷程對學生評鑑教師教學的影響:階層線性模式分析。課程與教學季刊,14(3),157–180。
游淑婷(2007)。彰化縣國民小學教師實施家庭作業之研究(未出版的碩士論文)。國立臺中教育大學,臺中市。
程炳林(2006)。主觀能力與逃避策略之關係。師大學報:教育類,51(2),25–43。
黃芳銘、楊金寶、許福生(2005)。在學青少年生活痛苦指標發展之研究。師大學報:教育類,50(2),97–119。
黃建皓(2013)。建構與驗證有效預測臺灣學生學業成就的三階層模式-階層線性模式之分析(未出版的博士論文)。國立臺南大學,臺南市。
黃敏雄(2008)。班級同質程度、家庭背景及數學表現:運用雙重差分法的跨國分析。臺灣社會學刊,40,1–44。
黃毅志、陳俊瑋(2008)。學科補習、成績表現與升學結果-以學測成績與上公立大學為例。教育研究集刊,54(1),117–149。
黃瓊瑤(2011)。「臺灣教育長期追蹤資料庫」現況介紹。SRDA學術調查研究資料庫通訊,37,14–23。
楊孟麗、譚康榮、黃敏雄(2003)。臺灣教育長期追蹤資料庫心理計量報告:TEPS 2001分析能力測驗。2014年4月19日,取自http://www.teps.sinica.edu.tw/description/TestingReport2004-2-10.pdf
溫福星、邱皓政(2011)。多層次模式方法論:階層線性模式的關鍵問題與試解。新北市:新亞測驗評量暨技術研究中心。
鄒慧英、江培銘(2012)。插補法在檢測試題差異功能的效果。測驗學刊,59,1–32。
廖培珊、江振東、林定香、李隆安、翁宏明、左宗光(2011)。葛特曼量表之拒答處理:簡易、多重與最鄰近插補法的比較。臺灣社會學刊,47,143–178。
臺灣教育長期追蹤資料庫後續調查:教育與勞力市場的連結(2014)。TEPS-B計畫介紹。取自http://tepsb.nccu.edu.tw/?page_id=2
劉長萱、蔡政豐(1997)。問卷調查的不完整取樣設計。調查研究,3,107–128。
蔡明璋(2004)。臺灣夫妻的家務工作時間:親密關係的影響。臺灣社會學,8,99–131。
鄭秋汶(2003)。大型資料庫介紹。SRDA學術調查研究資料庫通訊,7,30–33。
謝水南、顏國樑(1998)。國民小學作業指導之探討。載於黃政傑(主編),班級實務的改進(頁97–140)。臺北市:師大書苑。
謝琬如(2011)。亞洲五國(地區)國中生偏差行為與校園安全觀感對數學學習成就的影響-以TIMSS 2007資料庫為例(未出版的碩士論文)。國立暨南國際大學,南投縣。
簡晉龍、任宗浩、張淑婷(2008)。跨學科間自我概念與學業成就路徑模式之檢驗-整合模式在數學和科學領域的適用性。教育心理學報,40,107–126。
關秉寅、李敦義(2008)。補習數學有用嗎?一個「反事實」的分析。臺灣社會學刊,41,97–148。
關秉寅、李敦義(2010)。國中生數學補的愈久,數學成就愈好嗎?傾向分數配對法的分析。教育研究集刊,56(2),105–139。

貳、外文部份
Aksoy, T., & Link, C. R. (2000). A panel analysis of student mathematics achievement in the US in the 1990s: Does increasing the amount of time in learning activities affect mathematics achievement. Economics of Education Review, 19, 261–277. doi:10.1016/S0272-7757(99)00045-X
Alexander, K. L., Entwisle, D. R., & Olson, L. S. (2007). Lasting consequences of the summer learning gap. American Sociological Review, 72, 167–180. doi:10.1177/000312240707200202
Aronson, J., Zimmerman, J., & Carlos, L. (1999). Improving student achievement by extending school: Is it just a matter of time? Retrieved from http://www.wested.org/online_pubs/po-98-02.pdf
Bentler, P. M. (1982). Confirmatory factor analysis via non-iterative estimation: A fast inexpensive method. Journal of Marketing Research, 19, 417–424. doi:10.2307/3151715
Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238–246. doi:10.1037/0033-2909.107.2.238
Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness-of-fit in the analysis of covariance structures. Psychological Bulletin, 88, 588–606. doi:10.1037//0033-2909.88.3.588
Brown, S. C., Mason, C. A., Perrino, T., Hirama, L., Verdeja, R., Spokane, A. R., et al. (2009). Longitudinal relationships between neighboring behavior and depressive symptoms in Hispanic older adults in Miami, Florida. Journal of Community Psychology, 37, 618–634. doi:10.1002/jcop.20321
Bryan, T., Burstein, K., & Bryan, J. (2001). Students with learning disabilities: Homework problems and promising practices. Educational Psychologist, 36, 167–180. doi:10.1207/S15326985EP3603_3
Bui, K. (2007). Educational expectations and academic achievement among middle and high school students. Education, 127, 328–331. Retrieved from http://eric.ed.gov/?id=EJ790113
Burke, M. J., & Dunlap, W. P. (2002). Estimating interrater agreement with the average deviation index: A user’s guide. Organizational Research Methods, 5, 159–172. doi:10.1177/1094428102005002002
Burke, M. J., Finkelstein, L. M., & Dusig, M. S. (1999). On average deviation indices for estimating interrater agreement. Organizational Research Methods, 2, 49–68. doi:10.1177/109442819921004
Campbell, M. E., & Troyer, L. (2007). The implications of racial misclassification by observers. American Sociological Review, 72, 750–765. doi:10.1177/000312240707200505
Carroll, J. B. (1963). A model of school learning. Teachers College Record, 64, 723–733. Retrieved from http://www.tcrecord.org/Content.asp?ContentId=2839
Carroll, J. B. (1989). The Carroll model: A 25-Year retrospective and prospective View. Educational Research, 18, 26–31. doi:10.3102/0013189X018001026
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum Associates.
Cooper, H. (1989a). Homework. NY: Longman.
Cooper, H. (1989b). Synthesis of research on homework. Educational Leadership, 47, 85-91. Retrieved from http://www.ascd.org/ASCD/pdf/journals/ed_lead/el198911_cooper.pdf
Cooper, H. (2007). The battle over homework: Common ground for administrators, teachers, and parents (3rd ed.). Thousand Oaks, CA: Corwin Press.
Cooper, H., & Valentine, J. C. (2001). Using research to answer practical questions about homework. Educational Psychologist, 36, 143–153. doi:10.1207/S15326985EP3603_1
Cooper, H., Lindsey, J. J., Nye, B., & Greathouse, S. (1998). Relationships among attitudes about homework, amount of homework assigned and completed, and student achievement. Journal of Educational Psychology, 90, 70–83. doi:10.1037/0022-0663.90.1.70
Cooper, H., Robinson, J. C., & Patall, E. A. (2006). Does homework improve academic achievement? A synthesis of research, 1987-2003. Review of Educational Research, 76, 1–62. doi:10.3102/00346543076001001
Cosden, M., Morrison, G., Albanese, A. L., & Macias, S. (2001). When homework is not home work: After-school programs for homework assistance. Educational Psychologist, 36, 211–221. doi:10.1207/S15326985EP3603_6
Curran, P. J., & Bollen, K. J. (2001). The best of both worlds: Combining autoregressive and latent curve models. In L. M. Collins, & A. G. Sayer (Eds.), New methods for the analysis of change (pp. 107–135). Washington, DC: American Psychological Association.
Dettmers, S., Trautwein, U., & Lüdtke, O. (2009). The relationship between homework time and achievement is not universal: Evidence from multilevel analysis in 40 countries. School Effectiveness and School Improvement, 20, 375–405. doi:10.1080/09243450902904601
Dettmers, S., Trautwein, U., Lüdtke, O., Kunter, M., & Baumert, J. (2010). Homework works if homework quality is high: Using multilevel modeling to predict the development of achievement in mathematics. Journal of Educational Psychology, 102, 467–482. doi:10.1037/a0018453
Dunlap, W. P., Burke, M. J., & Smith-Crowe, K. (2003). Accurate tests of statistical significance for rWG and average deviation interrater agreement indexes. Journal of Applied Psychology, 88, 356–362. doi:10.1037/0021-9010.88.2.356
Enders, C. K., & Tofighi, D. (2007). Centering predictor variables in cross-sectional multilevel models: A new look at an old issue. Psychological Methods, 12(2), 121–138. doi:10.1037/1082-989X.12.2.121
Entwisle, D. R., Alexander, K. L., & Olson, L. S. (1997). Children, schools, and inequality. Boulder, CO: Westview Press.
Epstein, J. L., & Van Voorhis, F. L. (2001). More than minutes: Teachers’ roles in designing homework. Educational Psychologist, 36, 181–193. doi:10.1207/S15326985EP3603_4
Eren, O., & Henderson, D. J. (2011). Are we wasting our children’s time by giving them more homework? Economics of Education Review, 30, 950–961. doi:10.1016/j.econedurev.2011.03.011
Farnia, F., & Geva, E. (2011). Cognitive correlates of vocabulary growth in English language learners. Applied Psycholinguistics, 32, 711–738. doi:10.1017/S0142716411000038
Farnia, F., & Geva, E. (2013). Growth and predictors of change in English language learners’ reading comprehension. Journal of Research in Reading, 36, 389–421. doi:10.1111/jrir.12003
Farrow, S., Tymms, P., & Henderson, B. (1999). Homework and attainment in primary schools. British Educational Research Journal, 25, 323–341. doi:10.1080/0141192990250304
Foy, P. & Olson, J. F. (2009). TIMSS 2007 user guide for the international database. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.
Foy, P., Arora, A., & Stanco, G. M. (2013). TIMSS 2011 user guide for the international database. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.
Foy, P., Galia, J., & Li, I. (2008). Scaling the data from the TIMSS 2007 mathematics and science assessments. In J. F. Olson, M. O. Martin, & I. V. S. Mullis (Eds.), TIMSS 2007 technical report (pp. 225–279). Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.
Gettinger, M. (1985). Time allocated and time spent relative to time needed for learning as determinants of achievement. Journal of Educational Psychology, 77, 3–11. doi:10.1037//0022-0663.77.1.3
Graham, J. W. (2012). Missing data: Analysis and design. NY: Springer.
Gustafsson, J.-E. (2013). Causal inference in educational effectiveness research: A comparison of three methods to investigate effects of homework on student achievement. School Effectiveness and School Improvement, 24, 275–295. doi:10.1080/09243453.2013.806334
Hays, R. D., Marshall, G. M., Wang, E. Y. I., & Sherbourne, C. D. (1994). Four-year cross-lagged associations between physical and mental health in the medical outcomes study. Journal of Consulting and Clinical Psychology, 62, 441–449. doi:10.1037/0022-006X.62.3.441
Hoelter, J. W. (1983). The analysis of covariance structures: Goodness-of-fit indices. Sociological Methods and Research, 11, 325–344. doi:10.1177/0049124183011003003
Hong, E., & Milgram, R. M. (2000). Homework: Motivation and learning preference. Westport, Connecticut: Bergin & Garvey.
Hoover-Dempsey, K. V., Battiato, A. C., Walker, J. M. T., Reed, R. P., DeJong, J. M., & Jones, K. P. (2001). Parental involvement in homework. Educational Psychologist, 36, 195–209. doi:10.1207/S15326985EP3603_5
House, J. D. (2004). The effects of homework activities and teaching strategies for new mathematics topics on achievement of adolescent students in Japan: Results from the TIMSS 1999 assessment. International Journal of Instructional Media, 31, 199-210. Retrieved from http://www.highbeam.com/doc/1G1-139212124.html
Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indices in covariance analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6, 1–55. doi:10.1080/10705519909540118
James, L. R., Demaree, R. G., & Wolf, G. (1984). Estimating within- group interrater reliability with and without response bias. Journal of Applied Psychology, 69, 85–98. doi:10.1037//0021-9010.69.1.85
James, L. R., Demaree, R. G., & Wolf, G. (1993). rwg: An assessment of within-group interrater agreement. Journal of Applied Psychology, 78, 306–309. doi:10.1037/0021-9010.78.2.306
Keith, T. Z. (1982). Time spent on homework and high school grades: A large-sample path analysis. Journal of Educational Psychology, 74, 248–253. doi:10.1037//0022-0663.74.2.248
Keith, T. Z., & Cool, V. A. (1992). Testing models of school learning: Effects of quality of instruction, motivation, academic coursework, and homework on achievement. School Psychology Quarterly, 7, 207–226. doi:10.1037/h0088260
Keith, T. Z., Diamond-Hallam, C., & Fine, J. G. (2004). Longitudinal effects of in-school and out-of-school homework on high school grades. School Psychology Quarterly, 19, 187–211. doi:10.1521/scpq.19.3.187.40278
Kiecolt, K. J. & Nathan, L. E. (1985). Secondary Analysis of Survey Data. Newbury Park, CA: Sage.
LeBreton, J. M., & Senter, J. L. (2008). Answers to 20 questions about interrater reliability and interrater agreement. Organizational Research Methods, 11, 815–852. doi:10.1177/1094428106296642
Lindell, M. K. (2001). Assessing and testing interrater agreement on a single target using multi-item rating scales. Applied Psychological Measurement, 25, 89–99. doi:10.1177/01466216010251007
Lindell, M. K., & Brandt, C. J. (1997). Measuring interrater agreement for ratings of a single target. Applied Psychological Measurement, 21, 271–278. doi:10.1177/01466216970213006
Lindell, M. K., & Brandt, C. J. (1998). Measuring interrater agreement for ratings of a single target(vol 21, pp. 271–278, 1997). Applied Psychological Measurement, 22, 368–368.
Lindell, M. K., Brandt, C. J., & Whitney, D. J. (1999). A revised index of interrater agreement for multi-item ratings of a single target. Applied Psychological Measurement, 23, 127–135. doi:10.1177/01466219922031257
Little, R. J. A., & Rubin, D. B. (1989). The analysis of social science data with missing values. Sociological Methods and Research, 18, 292–326. doi:10.1177/0049124189018002004
Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data (2nd ed.). Hoboken, NJ: John Wiley & Sons.
Lüdtke, O., Trautwein, U., Kunter, M., & Baumert, J. (2006). Reliability and agreement of student ratings of the classroom environment: A reanalysis of TIMSS data. Learning Environments Research, 9, 215–230. doi:10.1007/s10984-006-9014-8
Maas, C. J. M., & Hox, J. J. (2005). Sufficient sample sizes for multilevel modeling. Methodology, 1(3), 86–92. doi:10.1027/1614-2241.1.3.86
Marsh, H. W., Gerlach, E., Trautwein, U., Lüdtke, O., & Brettschneider, W. D. (2007). Longitudinal study of preadolescent sport self-concept and performance: reciprocal effects and causal ordering. Child Development, 78, 1640–1656. doi:10.1111/j.1467-8624.2007.01094.x
McDonald, R. P., & Marsh, H. M. (1990). Choosing a multivariate model: Noncentrality and goodness-of-fit. Psychological Bulletin, 107, 247–255. doi:10.1037/0033-2909.107.2.247
Mullis, I. V. S., Martin, M. O., Ruddock, G. J., O’Sullivan, C. Y., Arora, A., & Erberber, E. (2005). TIMSS 2007 assessment frameworks. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.
Mullis, I. V. S., Martin, M. O., Ruddock, G. J., O’Sullivan, C. Y., & Preuschoff, C. (2009). TIMSS 2011 assessment frameworks. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.
Peugh, J. L., & Enders, C. K. (2004). Missing data in educational research: A review of reporting practices and suggestions for improvement. Review of Educational Research, 74, 525–556. doi:10.3102/00346543074004525
Pezdek, K., Berry, T., & Renno, P. A. (2002). Children’s mathematics achievement: The role of parents’ perceptions and their involvement in homework. Journal of Educational Psychology, 94, 771–777. doi:10.1037/0022-0663.94.4.771
Pollio, D. E., Thompson, S. J., Tobias, L., Reid, D., & Spitznagel, E. (2006). Longitudinal outcomes for youth receiving runaway/homeless shelter services. Journal of Youth and Adolescence, 35, 859–866. doi:10.1007/s10964-006-9098-6
Raudenbush, S. W., & Bark, A. S. (2002). Hierarchical linear models: Applications and data analysis methods (2nd ed.). Newbury Park, CA: Sage.
Roderique, T. W., Polloway, E. A., Cumblad, C., Epstein, M. H., & Bursuck, W. D. (1994). Homework: A survey of policies in the United States. Journal of Learning Disabilities, 27, 481–487. doi:10.1177/002221949402700803
Rønning, M. (2011). Who benefits from homework assignments? Economics of Education Review, 30, 55–64. doi:10.1016/j.econedurev.2010.07.001
Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. NY: John Wiley & Sons.
Rutkowski, L., Gonzalez, E., Joncas, M., & von Davier, M. (2010). International large-scale assessment data: Issues in secondary analysis and reporting. Educational Researcher, 39(2), 142–151. doi:10.3102/0013189X10363170
Schafer, J. L. (1999). NORM users’ guide: Multiple imputation of incomplete multivariate data under a normal model, version 2. Retrieved from https://methodology.psu.edu/pubs/books/missing#soft
Schafer, J. L. (2000). NORM: Multiple imputation of incomplete multivariate data under a normal model, version 2.03. Software for windows 95/98/NT. Retrieved from https://methodology.psu.edu/pubs/books/missing#soft
Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7(2), 147–177. doi:10.1037//1082-989X.7.2.147
Schütz, G., Ursprung, H. W., & Wößmann, L. (2008). Education policy and equality of opportunity. Kyklos, 61, 279–308. doi:10.1111/j.1467-6435.2008.00402.x
Sinharay, S., Stern, H. S., & Russell, D. (2001). The use of multiple imputation for the analysis of missing data. Psychological Methods, 6, 317–329. doi:10.1037/1082-989X.6.4.317
Smith-Crowe, K., & Burke, M. J., & (2003). Interpreting the statistical significance of observed AD interrater agreement values: Correction to Burke and Dunlap (2002). Organizational Research Methods, 6, 129–131. doi:10.1177/1094428102239428
Sofroniou, N., & Kellaghan, T. (2004). The utility of third international mathematics and science study scales in predicting students’ state examination performance. Journal of Educational Measurement, 41, 311–329. doi:10.1111/j.1745-3984.2004.tb01168.x
Trautwein, U. (2007). The homework-achievement relation reconsidered: Differentiating homework time, homework frequency, and homework effort. Learning and Instruction, 17, 372–388. doi:10.1016/j.learninstruc.2007.02.009
Trautwein, U., & Köller, O. (2003). The relationship between homework and achievement: Still much of a mystery. Educational Psychology Review, 15, 115–145. doi:10.1023/A:1023460414243
Trautwein, U., Köller, O., Schmitz, B., & Baumert, J. (2002). Do homework assignments enhance achievement? A multilevel analysis in 7th-grade mathematics. Contemporary Educational Psychology, 27, 26–50. doi:10.1006/ceps.2001.1084
Trautwein, U., Lüdtke, O., Kastens, C., & Köller, O. (2006a). Effort on homework in grades 5-9: Development, motivational antecedents, and the association with effort on classwork. Child Development, 77, 1094–1111. doi:10.1111/j.1467-8624.2006.00921.x
Trautwein, U., Lüdtke, O., Schnyder, I., & Niggli, A. (2006b). Predicting homework effort: Support for a domain-specific, multilevel homework model. Journal of Educational Psychology, 98, 438–456. doi:10.1037/0022-0663.98.2.438
Trautwein, U., Schnyder, I., Niggli, A., Neumann, M., & Lüdtke, O. (2009). Chameleon effects in homework research: The homework-achievement association depends on the measures used and the level of analysis chosen. Contemporary Educational Psychology, 34, 77–88. doi:10.1016/j.cedpsych.2008.09.001
Warton, P. M. (2001). The forgotten voices in homework: Views of students. Educational Psychologist, 36, 155–165. doi:10.1207/S15326985EP3603_2
Wildhagen, T. (2009). Why does cultural capital matter for high school academic performance? An empirical assessment of teacher-selection and self-selection mechanisms as explanations of the cultural capital effect. The Sociological Quarterly, 50, 173–200. doi:10.1111/j.1533-8525.2008.01137.x
Wildhagen, T. (2011). What’s oppositional culture got to do with it? Moving beyond the strong version of the acting white hypothesis. Sociological Perspectives, 54, 403–430. doi:10.1525/sop.2011.54.3.403
Zhu, Y., & Leung, F. K. S. (2012). Homework and mathematics achievement in Hong Kong: evidence from the TIMSS 2003. International Journal of Science and Mathematics Education, 10, 907–925. doi:10.1007/s10763-011-9302-3
描述 博士
國立政治大學
教育研究所
98152507
102
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0098152507
資料類型 thesis
dc.contributor.advisor 秦夢群zh_TW
dc.contributor.author (Authors) 陳俊瑋zh_TW
dc.creator (作者) 陳俊瑋zh_TW
dc.date (日期) 2013en_US
dc.date.accessioned 14-Jul-2014 11:28:05 (UTC+8)-
dc.date.available 14-Jul-2014 11:28:05 (UTC+8)-
dc.date.issued (上傳時間) 14-Jul-2014 11:28:05 (UTC+8)-
dc.identifier (Other Identifiers) G0098152507en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/67464-
dc.description (描述) 博士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 教育研究所zh_TW
dc.description (描述) 98152507zh_TW
dc.description (描述) 102zh_TW
dc.description.abstract (摘要) 本研究旨在了解家庭作業與學習成就的關係。為達研究目的,本研究以階層線性模式分析「國際數學與科學教育成就趨勢調查」2007年4年級學生資料;2007年8年級學生資料;以及2011年8年級學生資料,接著,本研究再以結構方程模式的長期追蹤交叉延宕模式,分析「臺灣教育長期追蹤資料庫」2001年、2003年及2005年追蹤樣本學生資料,本研究主要發現:
一、臺灣4年級學生的學生層次數學家庭作業時間對數學學習成就有顯著負向地影響效果;學生層次科學家庭作業時間對科學學習成就也有顯著負向地影響效果。
二、臺灣4年級學生的班級層次數學家庭作業頻率對數學學習成就沒有顯著地影響效果;班級層次科學家庭作業頻率對科學學習成就也沒有顯著地影響效果。
三、臺灣8年級學生的學生層次數學家庭作業時間對數學學習成就有顯著正向地影響效果;學生層次科學家庭作業時間對科學學習成就也有顯著正向地影響效果。
四、臺灣8年級學生的班級層次數學家庭作業頻率對數學學習成就有顯著正向地影響效果;班級層次科學家庭作業頻率對科學學習成就也有顯著正向地影響效果。
五、臺灣2001年7年級陸續追蹤至2005年11年級的學生,其家庭作業時間與學習成就有顯著正向地相互影響效果。
zh_TW
dc.description.abstract (摘要) This study aimed analyze the relationship between homework and learning achievements. Hierarchical linear modeling was used to analyze the 4th grade of elementary school students from Trends in International Mathematics and Science Study (TIMSS) 2007, 8th grade of junior high school students from TIMSS 2007, and 8th grade of junior high school students from TIMSS 2011. Moreover, structural equation modeling with cross-lagged panel modeling was used to analyze the core panel sample data from Taiwan Education Panel Survey (TEPS) in 2001, 2003, and 2005. The major findings were as follows:
1. Taiwan 4th grade of elementary school students’ student-level mathematic homework time could negative predict the mathematic learning achievements significantly, and student-level science homework time could also negative predict the science learning achievements significantly.
2. Taiwan 4th grade of elementary school students’ class-level mathematic homework frequency could not predict the mathematic learning achievements significantly, and class-level science homework frequency could also not predict the science learning achievements significantly.
3. Taiwan 8th grade of junior high school students’ student-level mathematic homework time could positive predict the mathematic learning achievements significantly, and student-level science homework time could also positive predict the science learning achievements significantly.
4. Taiwan 8th grade of junior high school students’ class-level mathematic homework frequency could positive predict the mathematic learning achievements significantly, and class-level science homework frequency could also positive predict the science learning achievements significantly.
5. Taiwan 7th grade of junior high school students to 11th grade of senior high school students’ homework time could positive predict the subsequent learning achievements significantly, and learning achievements could also positive predict the subsequent homework time significantly.
en_US
dc.description.tableofcontents 目次..I
表次..V
圖次..XV

第一章 緒論
第一節 研究動機..1
第二節 研究目的與研究問題..8
第三節 名詞釋義..9
第四節 研究範圍與研究限制..11

第二章 文獻探討
第一節 「國際數學與科學教育成就趨勢調查」簡介..13
第二節 「臺灣教育長期追蹤資料庫」簡介..32
第三節 家庭作業的基本概念..51
第四節 家庭作業與學習成就的相關研究..65

第三章 研究設計與實施
第一節 研究架構..89
第二節 研究假設..95
第三節 研究方法..98
第四節 資料來源..99
第五節 資料處理..110
第六節 變項測量..124
第七節 研究程序..141

第四章 研究結果與討論
第一節 臺灣學生的學生層次家庭作業時間和班級層次家庭作業頻率與學習成就的關係與討論..143
第二節 臺灣學生家庭作業時間與學習成就的相互影響效果與討論..248

第五章 結論與建議
第一節 結論..269
第二節 建議..272

參考書目
壹 中文部分..277
貳 外文部分..282

附錄
附錄A TIMSS 2007年4年級班級層次數學(科學)家庭作業頻率各班級組內共識程度(插補資料1)..291
附錄B TIMSS 2007年4年級班級層次數學(科學)家庭作業頻率各班級組內共識程度(插補資料2)..296
附錄C TIMSS 2007年4年級班級層次數學(科學)家庭作業頻率各班級組內共識程度(插補資料3)..301
附錄D TIMSS 2007年4年級班級層次數學(科學)家庭作業頻率各班級組內共識程度(插補資料4)..306
附錄E TIMSS 2007年4年級班級層次數學(科學)家庭作業頻率各班級組內共識程度(插補資料5)..311
附錄F TIMSS 2007年8年級班級層次數學(科學)家庭作業頻率各班級組內共識程度(插補資料1)..316
附錄G TIMSS 2007年8年級班級層次數學(科學)家庭作業頻率各班級組內共識程度(插補資料2)..321
附錄H TIMSS 2007年8年級班級層次數學(科學)家庭作業頻率各班級組內共識程度(插補資料3)..326
附錄I TIMSS 2007年8年級班級層次數學(科學)家庭作業頻率各班級組內共識程度(插補資料4)..331
附錄J TIMSS 2007年8年級班級層次數學(科學)家庭作業頻率各班級組內共識程度(插補資料5)..336
附錄K TIMSS 2011年8年級班級層次數學(科學)家庭作業頻率各班級組內共識程度(插補資料1)..341
附錄L TIMSS 2011年8年級班級層次數學(科學)家庭作業頻率各班級組內共識程度(插補資料2)..346
附錄M TIMSS 2011年8年級班級層次數學(科學)家庭作業頻率各班級組內共識程度(插補資料3)..351
附錄N TIMSS 2011年8年級班級層次數學(科學)家庭作業頻率各班級組內共識程度(插補資料4)..356
附錄O TIMSS 2011年8年級班級層次數學(科學)家庭作業頻率各班級組內共識程度(插補資料5)..361
zh_TW
dc.format.extent 23091434 bytes-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0098152507en_US
dc.subject (關鍵詞) 家庭作業時間zh_TW
dc.subject (關鍵詞) 家庭作業頻率zh_TW
dc.subject (關鍵詞) 學習成就zh_TW
dc.subject (關鍵詞) 多重插補zh_TW
dc.subject (關鍵詞) 似真值zh_TW
dc.subject (關鍵詞) homework timeen_US
dc.subject (關鍵詞) homework frequencyen_US
dc.subject (關鍵詞) learning achievementsen_US
dc.subject (關鍵詞) multiple imputationen_US
dc.subject (關鍵詞) plausible valuesen_US
dc.title (題名) 家庭作業與學習成就關係之研究—以TIMSS與TEPS臺灣學生為例zh_TW
dc.title (題名) The Relationship between Homework and Learning Achievements: An Example of Taiwan Students from TIMSS and TEPSen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 壹、中文部份
王文科(2002)。教育研究法(增訂七版)。臺北市:五南。
王彩緞(2009)。國小高年級學童家庭作業影響因素與親子互動關係之研究(未出版的碩士論文)。國立高雄師範大學,高雄市。
王鴻龍、楊孟麗、陳俊如、林定香(2012)。缺失資料在因素分析上的處理方法之研究。教育科學研究期刊,57(1),29–50。
王麗雲、游錦雲(2005)。學童社經背景與暑期經驗對暑期學習成就進展影響之研究。教育研究集刊,51(4),1–41。
任宗浩(2007a)。研究設計與資料分析。載於張俊彥(主編),TIMSS 2007 國際數學與科學教育成就趨勢調查國家報告(頁65–95)。取自http://www.dorise.info/DER/download_T2007/resault/TIMSS-2007-full_ver.pdf
任宗浩(2007b)。評量架構。載於張俊彥(主編),TIMSS 2007 國際數學與科學教育成就趨勢調查國家報告(頁11–63)。取自http://www.dorise.info/DER/download_T2007/resault/TIMSS-2007-full_ver.pdf
任宗浩、譚克平、張立民(2011)。二階段分層叢集抽樣的設計效應估計:以TIMSS 2007調查研究為例。教育科學研究期刊,56(1),33–65。
余民寧(2006)。潛在變項模式:SIMPLIS的應用。臺北市:高等教育。
余民寧、趙珮晴(2010)。選擇科學職業意圖的性別差異分析-以TIMSS 2003臺灣八年級學生為例。諮商輔導學報,22,1–29。
余民寧、趙珮晴、許嘉家(2009)。影響國中小女學生學業成就與學習興趣因素-以臺灣國際數學與科學教育成就趨勢調查(TIMSS)資料為例。教育資料與研究雙月刊,87,79–104。
余民寧、趙珮晴、陳嘉成(2010)。以社會認知生涯理論探討影響選擇數學職業意圖的因素。教育科學研究期刊,55(3),177–201。
余民寧、韓珮華(2009)。教學方式對數學學習興趣與數學成就之影響:以TIMSS 2003臺灣資料為例。測驗學刊,56,19–48。
吳心怡(2006)。國小教師設計家庭作業理念探究-以幸福國小為例(未出版的碩士論文)。國立臺東大學,臺東縣。
吳清山(1989)。國小高年級學生家庭作業現況之調查研究。臺北市立師範學院學報,20,105–141。
李宜玫、孫頌賢(2010)。大學生選課自主性動機與學習投入之關係。教育科學研究期刊,55(1),155–182。
李宜玫、陳姵穎(2010)。國小家庭作業類型的預測與中介效果:從教學風格到任務價值。教育科學研究期刊,55(4),187–213。
李春芳(1997)。教學技術。載於黃政傑(主編),教學原理(頁185–254)。臺北市:師大書苑。
李郁然(2002)。臺北市國小學生家庭作業現況之研究(未出版的碩士論文)。臺北市立師範學院,臺北市。
李懿芳、江芳盛(2008)。有效的學校領導對數學學習成就之影響:以TIMSS 2003臺灣調查資料為例。教育政策論壇,11(2),107–130。
李懿芳、江芳盛、蔡佳燕(2010)。校園安全觀感與國小學生數學及科學學業成就之相關研究。教育學刊,35,99–128。
林定香、藍信龍(2008)。缺失資料對潛在類別迴歸模式參數估計之影響。中國統計學報,46,197–212。
林尚俞(2004)。桃園縣國民小學家庭作業實施現況之研究(未出版的碩士論文)。國立新竹師範學院,新竹市。
林俊瑩、黃毅志(2008)。影響臺灣地區學生學業成就的可能機制:結構方程模式的探究。臺灣教育社會學研究,8(1),45–88。
林雅玲(2009)。基隆市國民小學學生家長參與家庭作業之實徵調查研究(未出版的碩士論文)。國立臺北教育大學,臺北市。
林鉦棽、彭台光(2006)。多層次管理研究:分析層次的概念、理論和方法。管理學報,23,649–675。
林寶山(1988)。教學原理。臺北市:五南。
洪川富(2008)。家庭作業完成時間與頻率對學習成就的影響之研究-TIMSS 2003臺灣數學科資料的階層線性模式分析(未出版的碩士論文)。國立政治大學,臺北市。
徐嘉怡(2001)。花蓮縣國民小學家庭作業施行狀況之研究(未出版的碩士論文)。國立花蓮師範學院,花蓮縣。
秦夢群、吳勁甫(2009)。國民中學教師彰權益能、學校組織健康與學校效能關係之研究。教育與心理研究,32(1),1–28。
秦夢群、吳勁甫(2011)。國中校長教學領導、學校知識管理與教師教學效能之多層次分析。教育與心理研究,34(2),1–31。
高廣孚(1988)。教學原理。臺北市:五南。
張宜君(2014)。不能停的競賽:暑期活動對中學生學業成就的影響。人文及社會科學集刊,26,63–102。
張芳全(2006)。影響數學成就因素探討-以臺灣在TIMSS 2003年的樣本為例。課程與教學季刊,9(3),151–168。
張芳全(2007)。臺灣、美國及日本之國二學生家庭作業與數學成就關係比較。教育資料集刊,34,285–316。
張芳全(2009)。家長教育程度與科學成就之關係:文化資本、補習時間與學習興趣為中介的分析。教育研究與發展期刊,5(4),39–76。
張芳全(2010)。多層次模型在學習成就之研究。臺北市:心理。
張芳全(2011)。家長教育程度、文化資本、自我抱負、學習興趣與數學成就之關係研究。臺中教育大學學報:教育類,25,29–56。
張俊彥(2007)。緒論。載於張俊彥(主編),TIMSS 2007 國際數學與科學教育成就趨勢調查國家報告(頁1–9)。取自http://www.dorise.info/DER/download_T2007/resault/TIMSS-2007-full_ver.pdf
張苙雲(2011)。臺灣教育長期追蹤資料庫:第一波(2001)、第二波(2003)、第三波(2005)、第四波(2007)資料使用手冊【2011.05.31版】。臺北市:中央研究院調查研究專題中心【管理、釋出單位】。
張郁雯(2008)。對比效應對學業自我概念之影響-發展的觀點。教育心理學報,40,23–38。
張郁雯、林文瑛、王震武(2013)。科學表現的兩性差異縮小了嗎?-國際科學表現評量資料之探究。教育心理學報,44,459–476。
張毓仁、柯華葳、邱皓政、歐宗霖、溫福星(2011)。教師閱讀教學行為與學生閱讀態度和閱讀能力自我評價對於閱讀成就之跨層次影響:以PIRLS 2006為例。教育科學研究期刊,56(2),69–105。
許文耀(2008)。國民小學學生家庭作業與學業成就關係之研究-以基隆市二所國小為例(未出版的碩士論文)。國立臺北教育大學,臺北市。
許玉雪、林建宏(2008)。插補法在不同缺失機制下之比較分析。統計與資訊評論,10,19–39。
許鐘元(2010)。國中學生自我調整學習策略、家庭作業與課業學習成就之相關研究(未出版的碩士論文)。國立高雄師範大學,高雄市。
陳依喬(2011)。臺灣八年級學生數學成就之多層次模型-以TIMSS 2007為例(未出版的碩士論文)。國立臺北教育大學,臺北市。
陳俊瑋(2010)。國中教師集體效能感、教師自我效能感及教師組織公民行為關聯之研究:多層次中介效果之分析。當代教育研究,18(2),29–69。
陳俊瑋(2011)。學生教育抱負與學習成就關係之研究:長期追蹤資料之分析。當代教育研究,19(4),127–172。
陳俊瑋、黃毅志(2011)。重探學科補習的階層化與效益:Wisconsin模型的延伸。教育研究集刊,57(1),101–135。
陳信木、林佳瑩(1997)。調查資料之遺漏值的處置-以熱卡插補法為例。調查研究,3,75–106。
陳耿睿(2011)。臺灣國小學童數學學習成就之原因比較研究:以TIMSS 2007資料為例(未出版的碩士論文)。國立臺北教育大學,臺北市。
陳敏瑜、游錦雲(2013)。以TIMSS資料檢視能力信念與任務價值對臺灣八年級學生數學成就之影響。教育科學研究期刊,58(3),153–186。
陳惠邦(2003)。德國教育制度。載於王家通(主編),各國教育制度(頁405–432)。臺北市:師大書苑。
陳嘉成(2007)。區別高低分群學生數學成就因素的國際比較-以臺灣、南韓、澳洲與賽普勒斯的TIMSS 2003學生背景資料為例。測驗學刊,54,377–402。
喬麗文(2008)。課後學習對國中生數學成就的影響-九國/地區之比較(未出版的碩士論文)。國立暨南國際大學,南投縣。
曾明基、邱于真、張德勝、羅寶鳳(2011)。學生認知歷程對學生評鑑教師教學的影響:階層線性模式分析。課程與教學季刊,14(3),157–180。
游淑婷(2007)。彰化縣國民小學教師實施家庭作業之研究(未出版的碩士論文)。國立臺中教育大學,臺中市。
程炳林(2006)。主觀能力與逃避策略之關係。師大學報:教育類,51(2),25–43。
黃芳銘、楊金寶、許福生(2005)。在學青少年生活痛苦指標發展之研究。師大學報:教育類,50(2),97–119。
黃建皓(2013)。建構與驗證有效預測臺灣學生學業成就的三階層模式-階層線性模式之分析(未出版的博士論文)。國立臺南大學,臺南市。
黃敏雄(2008)。班級同質程度、家庭背景及數學表現:運用雙重差分法的跨國分析。臺灣社會學刊,40,1–44。
黃毅志、陳俊瑋(2008)。學科補習、成績表現與升學結果-以學測成績與上公立大學為例。教育研究集刊,54(1),117–149。
黃瓊瑤(2011)。「臺灣教育長期追蹤資料庫」現況介紹。SRDA學術調查研究資料庫通訊,37,14–23。
楊孟麗、譚康榮、黃敏雄(2003)。臺灣教育長期追蹤資料庫心理計量報告:TEPS 2001分析能力測驗。2014年4月19日,取自http://www.teps.sinica.edu.tw/description/TestingReport2004-2-10.pdf
溫福星、邱皓政(2011)。多層次模式方法論:階層線性模式的關鍵問題與試解。新北市:新亞測驗評量暨技術研究中心。
鄒慧英、江培銘(2012)。插補法在檢測試題差異功能的效果。測驗學刊,59,1–32。
廖培珊、江振東、林定香、李隆安、翁宏明、左宗光(2011)。葛特曼量表之拒答處理:簡易、多重與最鄰近插補法的比較。臺灣社會學刊,47,143–178。
臺灣教育長期追蹤資料庫後續調查:教育與勞力市場的連結(2014)。TEPS-B計畫介紹。取自http://tepsb.nccu.edu.tw/?page_id=2
劉長萱、蔡政豐(1997)。問卷調查的不完整取樣設計。調查研究,3,107–128。
蔡明璋(2004)。臺灣夫妻的家務工作時間:親密關係的影響。臺灣社會學,8,99–131。
鄭秋汶(2003)。大型資料庫介紹。SRDA學術調查研究資料庫通訊,7,30–33。
謝水南、顏國樑(1998)。國民小學作業指導之探討。載於黃政傑(主編),班級實務的改進(頁97–140)。臺北市:師大書苑。
謝琬如(2011)。亞洲五國(地區)國中生偏差行為與校園安全觀感對數學學習成就的影響-以TIMSS 2007資料庫為例(未出版的碩士論文)。國立暨南國際大學,南投縣。
簡晉龍、任宗浩、張淑婷(2008)。跨學科間自我概念與學業成就路徑模式之檢驗-整合模式在數學和科學領域的適用性。教育心理學報,40,107–126。
關秉寅、李敦義(2008)。補習數學有用嗎?一個「反事實」的分析。臺灣社會學刊,41,97–148。
關秉寅、李敦義(2010)。國中生數學補的愈久,數學成就愈好嗎?傾向分數配對法的分析。教育研究集刊,56(2),105–139。

貳、外文部份
Aksoy, T., & Link, C. R. (2000). A panel analysis of student mathematics achievement in the US in the 1990s: Does increasing the amount of time in learning activities affect mathematics achievement. Economics of Education Review, 19, 261–277. doi:10.1016/S0272-7757(99)00045-X
Alexander, K. L., Entwisle, D. R., & Olson, L. S. (2007). Lasting consequences of the summer learning gap. American Sociological Review, 72, 167–180. doi:10.1177/000312240707200202
Aronson, J., Zimmerman, J., & Carlos, L. (1999). Improving student achievement by extending school: Is it just a matter of time? Retrieved from http://www.wested.org/online_pubs/po-98-02.pdf
Bentler, P. M. (1982). Confirmatory factor analysis via non-iterative estimation: A fast inexpensive method. Journal of Marketing Research, 19, 417–424. doi:10.2307/3151715
Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238–246. doi:10.1037/0033-2909.107.2.238
Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness-of-fit in the analysis of covariance structures. Psychological Bulletin, 88, 588–606. doi:10.1037//0033-2909.88.3.588
Brown, S. C., Mason, C. A., Perrino, T., Hirama, L., Verdeja, R., Spokane, A. R., et al. (2009). Longitudinal relationships between neighboring behavior and depressive symptoms in Hispanic older adults in Miami, Florida. Journal of Community Psychology, 37, 618–634. doi:10.1002/jcop.20321
Bryan, T., Burstein, K., & Bryan, J. (2001). Students with learning disabilities: Homework problems and promising practices. Educational Psychologist, 36, 167–180. doi:10.1207/S15326985EP3603_3
Bui, K. (2007). Educational expectations and academic achievement among middle and high school students. Education, 127, 328–331. Retrieved from http://eric.ed.gov/?id=EJ790113
Burke, M. J., & Dunlap, W. P. (2002). Estimating interrater agreement with the average deviation index: A user’s guide. Organizational Research Methods, 5, 159–172. doi:10.1177/1094428102005002002
Burke, M. J., Finkelstein, L. M., & Dusig, M. S. (1999). On average deviation indices for estimating interrater agreement. Organizational Research Methods, 2, 49–68. doi:10.1177/109442819921004
Campbell, M. E., & Troyer, L. (2007). The implications of racial misclassification by observers. American Sociological Review, 72, 750–765. doi:10.1177/000312240707200505
Carroll, J. B. (1963). A model of school learning. Teachers College Record, 64, 723–733. Retrieved from http://www.tcrecord.org/Content.asp?ContentId=2839
Carroll, J. B. (1989). The Carroll model: A 25-Year retrospective and prospective View. Educational Research, 18, 26–31. doi:10.3102/0013189X018001026
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum Associates.
Cooper, H. (1989a). Homework. NY: Longman.
Cooper, H. (1989b). Synthesis of research on homework. Educational Leadership, 47, 85-91. Retrieved from http://www.ascd.org/ASCD/pdf/journals/ed_lead/el198911_cooper.pdf
Cooper, H. (2007). The battle over homework: Common ground for administrators, teachers, and parents (3rd ed.). Thousand Oaks, CA: Corwin Press.
Cooper, H., & Valentine, J. C. (2001). Using research to answer practical questions about homework. Educational Psychologist, 36, 143–153. doi:10.1207/S15326985EP3603_1
Cooper, H., Lindsey, J. J., Nye, B., & Greathouse, S. (1998). Relationships among attitudes about homework, amount of homework assigned and completed, and student achievement. Journal of Educational Psychology, 90, 70–83. doi:10.1037/0022-0663.90.1.70
Cooper, H., Robinson, J. C., & Patall, E. A. (2006). Does homework improve academic achievement? A synthesis of research, 1987-2003. Review of Educational Research, 76, 1–62. doi:10.3102/00346543076001001
Cosden, M., Morrison, G., Albanese, A. L., & Macias, S. (2001). When homework is not home work: After-school programs for homework assistance. Educational Psychologist, 36, 211–221. doi:10.1207/S15326985EP3603_6
Curran, P. J., & Bollen, K. J. (2001). The best of both worlds: Combining autoregressive and latent curve models. In L. M. Collins, & A. G. Sayer (Eds.), New methods for the analysis of change (pp. 107–135). Washington, DC: American Psychological Association.
Dettmers, S., Trautwein, U., & Lüdtke, O. (2009). The relationship between homework time and achievement is not universal: Evidence from multilevel analysis in 40 countries. School Effectiveness and School Improvement, 20, 375–405. doi:10.1080/09243450902904601
Dettmers, S., Trautwein, U., Lüdtke, O., Kunter, M., & Baumert, J. (2010). Homework works if homework quality is high: Using multilevel modeling to predict the development of achievement in mathematics. Journal of Educational Psychology, 102, 467–482. doi:10.1037/a0018453
Dunlap, W. P., Burke, M. J., & Smith-Crowe, K. (2003). Accurate tests of statistical significance for rWG and average deviation interrater agreement indexes. Journal of Applied Psychology, 88, 356–362. doi:10.1037/0021-9010.88.2.356
Enders, C. K., & Tofighi, D. (2007). Centering predictor variables in cross-sectional multilevel models: A new look at an old issue. Psychological Methods, 12(2), 121–138. doi:10.1037/1082-989X.12.2.121
Entwisle, D. R., Alexander, K. L., & Olson, L. S. (1997). Children, schools, and inequality. Boulder, CO: Westview Press.
Epstein, J. L., & Van Voorhis, F. L. (2001). More than minutes: Teachers’ roles in designing homework. Educational Psychologist, 36, 181–193. doi:10.1207/S15326985EP3603_4
Eren, O., & Henderson, D. J. (2011). Are we wasting our children’s time by giving them more homework? Economics of Education Review, 30, 950–961. doi:10.1016/j.econedurev.2011.03.011
Farnia, F., & Geva, E. (2011). Cognitive correlates of vocabulary growth in English language learners. Applied Psycholinguistics, 32, 711–738. doi:10.1017/S0142716411000038
Farnia, F., & Geva, E. (2013). Growth and predictors of change in English language learners’ reading comprehension. Journal of Research in Reading, 36, 389–421. doi:10.1111/jrir.12003
Farrow, S., Tymms, P., & Henderson, B. (1999). Homework and attainment in primary schools. British Educational Research Journal, 25, 323–341. doi:10.1080/0141192990250304
Foy, P. & Olson, J. F. (2009). TIMSS 2007 user guide for the international database. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.
Foy, P., Arora, A., & Stanco, G. M. (2013). TIMSS 2011 user guide for the international database. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.
Foy, P., Galia, J., & Li, I. (2008). Scaling the data from the TIMSS 2007 mathematics and science assessments. In J. F. Olson, M. O. Martin, & I. V. S. Mullis (Eds.), TIMSS 2007 technical report (pp. 225–279). Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.
Gettinger, M. (1985). Time allocated and time spent relative to time needed for learning as determinants of achievement. Journal of Educational Psychology, 77, 3–11. doi:10.1037//0022-0663.77.1.3
Graham, J. W. (2012). Missing data: Analysis and design. NY: Springer.
Gustafsson, J.-E. (2013). Causal inference in educational effectiveness research: A comparison of three methods to investigate effects of homework on student achievement. School Effectiveness and School Improvement, 24, 275–295. doi:10.1080/09243453.2013.806334
Hays, R. D., Marshall, G. M., Wang, E. Y. I., & Sherbourne, C. D. (1994). Four-year cross-lagged associations between physical and mental health in the medical outcomes study. Journal of Consulting and Clinical Psychology, 62, 441–449. doi:10.1037/0022-006X.62.3.441
Hoelter, J. W. (1983). The analysis of covariance structures: Goodness-of-fit indices. Sociological Methods and Research, 11, 325–344. doi:10.1177/0049124183011003003
Hong, E., & Milgram, R. M. (2000). Homework: Motivation and learning preference. Westport, Connecticut: Bergin & Garvey.
Hoover-Dempsey, K. V., Battiato, A. C., Walker, J. M. T., Reed, R. P., DeJong, J. M., & Jones, K. P. (2001). Parental involvement in homework. Educational Psychologist, 36, 195–209. doi:10.1207/S15326985EP3603_5
House, J. D. (2004). The effects of homework activities and teaching strategies for new mathematics topics on achievement of adolescent students in Japan: Results from the TIMSS 1999 assessment. International Journal of Instructional Media, 31, 199-210. Retrieved from http://www.highbeam.com/doc/1G1-139212124.html
Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indices in covariance analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6, 1–55. doi:10.1080/10705519909540118
James, L. R., Demaree, R. G., & Wolf, G. (1984). Estimating within- group interrater reliability with and without response bias. Journal of Applied Psychology, 69, 85–98. doi:10.1037//0021-9010.69.1.85
James, L. R., Demaree, R. G., & Wolf, G. (1993). rwg: An assessment of within-group interrater agreement. Journal of Applied Psychology, 78, 306–309. doi:10.1037/0021-9010.78.2.306
Keith, T. Z. (1982). Time spent on homework and high school grades: A large-sample path analysis. Journal of Educational Psychology, 74, 248–253. doi:10.1037//0022-0663.74.2.248
Keith, T. Z., & Cool, V. A. (1992). Testing models of school learning: Effects of quality of instruction, motivation, academic coursework, and homework on achievement. School Psychology Quarterly, 7, 207–226. doi:10.1037/h0088260
Keith, T. Z., Diamond-Hallam, C., & Fine, J. G. (2004). Longitudinal effects of in-school and out-of-school homework on high school grades. School Psychology Quarterly, 19, 187–211. doi:10.1521/scpq.19.3.187.40278
Kiecolt, K. J. & Nathan, L. E. (1985). Secondary Analysis of Survey Data. Newbury Park, CA: Sage.
LeBreton, J. M., & Senter, J. L. (2008). Answers to 20 questions about interrater reliability and interrater agreement. Organizational Research Methods, 11, 815–852. doi:10.1177/1094428106296642
Lindell, M. K. (2001). Assessing and testing interrater agreement on a single target using multi-item rating scales. Applied Psychological Measurement, 25, 89–99. doi:10.1177/01466216010251007
Lindell, M. K., & Brandt, C. J. (1997). Measuring interrater agreement for ratings of a single target. Applied Psychological Measurement, 21, 271–278. doi:10.1177/01466216970213006
Lindell, M. K., & Brandt, C. J. (1998). Measuring interrater agreement for ratings of a single target(vol 21, pp. 271–278, 1997). Applied Psychological Measurement, 22, 368–368.
Lindell, M. K., Brandt, C. J., & Whitney, D. J. (1999). A revised index of interrater agreement for multi-item ratings of a single target. Applied Psychological Measurement, 23, 127–135. doi:10.1177/01466219922031257
Little, R. J. A., & Rubin, D. B. (1989). The analysis of social science data with missing values. Sociological Methods and Research, 18, 292–326. doi:10.1177/0049124189018002004
Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data (2nd ed.). Hoboken, NJ: John Wiley & Sons.
Lüdtke, O., Trautwein, U., Kunter, M., & Baumert, J. (2006). Reliability and agreement of student ratings of the classroom environment: A reanalysis of TIMSS data. Learning Environments Research, 9, 215–230. doi:10.1007/s10984-006-9014-8
Maas, C. J. M., & Hox, J. J. (2005). Sufficient sample sizes for multilevel modeling. Methodology, 1(3), 86–92. doi:10.1027/1614-2241.1.3.86
Marsh, H. W., Gerlach, E., Trautwein, U., Lüdtke, O., & Brettschneider, W. D. (2007). Longitudinal study of preadolescent sport self-concept and performance: reciprocal effects and causal ordering. Child Development, 78, 1640–1656. doi:10.1111/j.1467-8624.2007.01094.x
McDonald, R. P., & Marsh, H. M. (1990). Choosing a multivariate model: Noncentrality and goodness-of-fit. Psychological Bulletin, 107, 247–255. doi:10.1037/0033-2909.107.2.247
Mullis, I. V. S., Martin, M. O., Ruddock, G. J., O’Sullivan, C. Y., Arora, A., & Erberber, E. (2005). TIMSS 2007 assessment frameworks. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.
Mullis, I. V. S., Martin, M. O., Ruddock, G. J., O’Sullivan, C. Y., & Preuschoff, C. (2009). TIMSS 2011 assessment frameworks. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.
Peugh, J. L., & Enders, C. K. (2004). Missing data in educational research: A review of reporting practices and suggestions for improvement. Review of Educational Research, 74, 525–556. doi:10.3102/00346543074004525
Pezdek, K., Berry, T., & Renno, P. A. (2002). Children’s mathematics achievement: The role of parents’ perceptions and their involvement in homework. Journal of Educational Psychology, 94, 771–777. doi:10.1037/0022-0663.94.4.771
Pollio, D. E., Thompson, S. J., Tobias, L., Reid, D., & Spitznagel, E. (2006). Longitudinal outcomes for youth receiving runaway/homeless shelter services. Journal of Youth and Adolescence, 35, 859–866. doi:10.1007/s10964-006-9098-6
Raudenbush, S. W., & Bark, A. S. (2002). Hierarchical linear models: Applications and data analysis methods (2nd ed.). Newbury Park, CA: Sage.
Roderique, T. W., Polloway, E. A., Cumblad, C., Epstein, M. H., & Bursuck, W. D. (1994). Homework: A survey of policies in the United States. Journal of Learning Disabilities, 27, 481–487. doi:10.1177/002221949402700803
Rønning, M. (2011). Who benefits from homework assignments? Economics of Education Review, 30, 55–64. doi:10.1016/j.econedurev.2010.07.001
Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. NY: John Wiley & Sons.
Rutkowski, L., Gonzalez, E., Joncas, M., & von Davier, M. (2010). International large-scale assessment data: Issues in secondary analysis and reporting. Educational Researcher, 39(2), 142–151. doi:10.3102/0013189X10363170
Schafer, J. L. (1999). NORM users’ guide: Multiple imputation of incomplete multivariate data under a normal model, version 2. Retrieved from https://methodology.psu.edu/pubs/books/missing#soft
Schafer, J. L. (2000). NORM: Multiple imputation of incomplete multivariate data under a normal model, version 2.03. Software for windows 95/98/NT. Retrieved from https://methodology.psu.edu/pubs/books/missing#soft
Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7(2), 147–177. doi:10.1037//1082-989X.7.2.147
Schütz, G., Ursprung, H. W., & Wößmann, L. (2008). Education policy and equality of opportunity. Kyklos, 61, 279–308. doi:10.1111/j.1467-6435.2008.00402.x
Sinharay, S., Stern, H. S., & Russell, D. (2001). The use of multiple imputation for the analysis of missing data. Psychological Methods, 6, 317–329. doi:10.1037/1082-989X.6.4.317
Smith-Crowe, K., & Burke, M. J., & (2003). Interpreting the statistical significance of observed AD interrater agreement values: Correction to Burke and Dunlap (2002). Organizational Research Methods, 6, 129–131. doi:10.1177/1094428102239428
Sofroniou, N., & Kellaghan, T. (2004). The utility of third international mathematics and science study scales in predicting students’ state examination performance. Journal of Educational Measurement, 41, 311–329. doi:10.1111/j.1745-3984.2004.tb01168.x
Trautwein, U. (2007). The homework-achievement relation reconsidered: Differentiating homework time, homework frequency, and homework effort. Learning and Instruction, 17, 372–388. doi:10.1016/j.learninstruc.2007.02.009
Trautwein, U., & Köller, O. (2003). The relationship between homework and achievement: Still much of a mystery. Educational Psychology Review, 15, 115–145. doi:10.1023/A:1023460414243
Trautwein, U., Köller, O., Schmitz, B., & Baumert, J. (2002). Do homework assignments enhance achievement? A multilevel analysis in 7th-grade mathematics. Contemporary Educational Psychology, 27, 26–50. doi:10.1006/ceps.2001.1084
Trautwein, U., Lüdtke, O., Kastens, C., & Köller, O. (2006a). Effort on homework in grades 5-9: Development, motivational antecedents, and the association with effort on classwork. Child Development, 77, 1094–1111. doi:10.1111/j.1467-8624.2006.00921.x
Trautwein, U., Lüdtke, O., Schnyder, I., & Niggli, A. (2006b). Predicting homework effort: Support for a domain-specific, multilevel homework model. Journal of Educational Psychology, 98, 438–456. doi:10.1037/0022-0663.98.2.438
Trautwein, U., Schnyder, I., Niggli, A., Neumann, M., & Lüdtke, O. (2009). Chameleon effects in homework research: The homework-achievement association depends on the measures used and the level of analysis chosen. Contemporary Educational Psychology, 34, 77–88. doi:10.1016/j.cedpsych.2008.09.001
Warton, P. M. (2001). The forgotten voices in homework: Views of students. Educational Psychologist, 36, 155–165. doi:10.1207/S15326985EP3603_2
Wildhagen, T. (2009). Why does cultural capital matter for high school academic performance? An empirical assessment of teacher-selection and self-selection mechanisms as explanations of the cultural capital effect. The Sociological Quarterly, 50, 173–200. doi:10.1111/j.1533-8525.2008.01137.x
Wildhagen, T. (2011). What’s oppositional culture got to do with it? Moving beyond the strong version of the acting white hypothesis. Sociological Perspectives, 54, 403–430. doi:10.1525/sop.2011.54.3.403
Zhu, Y., & Leung, F. K. S. (2012). Homework and mathematics achievement in Hong Kong: evidence from the TIMSS 2003. International Journal of Science and Mathematics Education, 10, 907–925. doi:10.1007/s10763-011-9302-3
zh_TW