Publications-Theses
Article View/Open
Publication Export
-
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
題名 具變動抽樣間隔的雙次抽樣損失管制圖之設計
沒英文名稱作者 王嘉煒 貢獻者 楊素芬
王嘉煒關鍵詞 管制圖 日期 2013 上傳時間 21-Jul-2014 15:37:04 (UTC+8) 摘要 本篇研究的目的為建立Optimal DS AL管制圖,並以ARL為績效的衡量指標,接著以R軟體的基因演算法決定使失控ARL最小化的管制界線。接著建立DSVSI EWMA AL管制圖,並以ATS為績效的衡量指標。當EWMA的權重 時,DSVSI EWMA AL管制圖則簡化為DSVSI AL管制圖,當固定抽樣間隔時,DSVSI EWMA AL管制圖則簡化為DS EWMA AL管制圖,當EWMA的權重 且抽樣間隔固定時,DSVSI EWMA AL管制圖則簡化為DS AL管制圖。最後以資料分析比較 DSVSI EWMA AL管制圖、DSVSI AL管制圖 、DS EWMA AL管制圖、Optimal DS AL管制圖、 DS AL管制圖 、 Optimal VSI AL管制圖(Yang 2013a) 、AL管制圖(Yang 2013)和DS X-bar and S管制圖(He and Grigoryan 2004)之失控的偵測績效。 參考文獻 陸、 參考文獻Costa, A. F. (1998). Joint X-bar and R charts with variable parameters. IIE transactions, 30(6), 505-514.Chen, G., and Cheng, S. W. (1998). Max chart: combining X-bar chart and S chart. Statistica Sinica, 8(1), 263-271.Carot, V., Jabaloyes, J. M., and Carot, T. (2002). Combined double sampling and variable sampling interval X-bar chart. International Journal of Production Research,40(9), 2175-2186.Daudin, J. J. (1992). Double Sampling X-bar Charts. Journal of Quality Technology , 24 78-87.Farebrother, R. W. (1984). Algorithm AS 204: The distribution of a positive linear combination of χ 2 random variables. Applied Statistics, 332-339.Grabov, P., and Ingman, D. (1996). Adaptive control limits for bivariate process monitoring. Journal of quality technology, 28(3), 320-330.He, D., and Grigoryan, A. (2002). Construction of double sampling s‐control charts for agile manufacturing. Quality and reliability engineering international,18(4), 343-355.He, D., and Grigoryan, A. (2006). Joint statistical design of double sampling X-bar and S charts. European Journal of Operational Research, 168(1), 122-142.Imhof, J. P. (1961). Computing the distribution of quadratic forms in normal variables. Biometrika, 419-426.Liu, H., Tang, Y., and Zhang, H. H. (2009). A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables. Computational Statistics & Data Analysis, 53(4), 853-856.Lee, P. H., Chang, Y. C., and Torng, C. C. (2012). A design of S control charts with a combined double sampling and variable sampling interval scheme.Communications in Statistics-Theory and Methods, 41(1), 153-165.Moschopoulos, P. G., and Canada, W. B. (1984). The distribution function of a linear combination of chi-squares. Computers & mathematics with applications,10(4), 383-386.Patnaik, P. B. (1949). The non-central χ2-and F-distributions and their pplications. Biometrika, 36(1-2), 202-232.Page, E. S. (1954). Continuous inspection schemes. Biometrika, 100-115.Roberts, S. W. (1958). Properties of control chart zone tests. Bell System Technical Journal, 37(1), 83-114.Reynolds, M. R., Amin, R. W., Arnold, J. C., and Nachlas, J. A. (1988). X-bar charts with variable sampling intervals. Technometrics, 30(2), 181-192.Shewhart, W. A. (1931). Economic control of quality of manufactured product(Vol. 509). ASQ Quality Press.Sullivan, J. H., and Woodall, W. H. (1996). A comparison of multivariate control charts for individual observations. Journal of Quality Technology, 28(4).Spiring, F. A., and Cheng, S. W. (1998). An alternate variables control chart: the univariate and multivariate case. Statistica Sinica, 8(1), 273-287.Wu, Z., and Tian, Y. (2006). Weighted-loss-function control charts. The International Journal of Advanced Manufacturing Technology, 31(1-2), 107-115.Yang, S. F. (2013a). Using a Single Average Loss Control Chart to Monitor Process Mean and Variability. Communications in Statistics-Simulation and Computation, 42(7), 1549-1562.Yang, S. F. (2013b). Using a new VSI EWMA average loss control chart to monitor changes in the difference between the process mean and target and/or the process variability. Applied Mathematical Modelling, 37(16), 7973-7982. 描述 碩士
國立政治大學
統計研究所
101354022
102資料來源 http://thesis.lib.nccu.edu.tw/record/#G0101354022 資料類型 thesis dc.contributor.advisor 楊素芬 zh_TW dc.contributor.author (Authors) 王嘉煒 zh_TW dc.creator (作者) 王嘉煒 zh_TW dc.date (日期) 2013 en_US dc.date.accessioned 21-Jul-2014 15:37:04 (UTC+8) - dc.date.available 21-Jul-2014 15:37:04 (UTC+8) - dc.date.issued (上傳時間) 21-Jul-2014 15:37:04 (UTC+8) - dc.identifier (Other Identifiers) G0101354022 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/67590 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 統計研究所 zh_TW dc.description (描述) 101354022 zh_TW dc.description (描述) 102 zh_TW dc.description.abstract (摘要) 本篇研究的目的為建立Optimal DS AL管制圖,並以ARL為績效的衡量指標,接著以R軟體的基因演算法決定使失控ARL最小化的管制界線。接著建立DSVSI EWMA AL管制圖,並以ATS為績效的衡量指標。當EWMA的權重 時,DSVSI EWMA AL管制圖則簡化為DSVSI AL管制圖,當固定抽樣間隔時,DSVSI EWMA AL管制圖則簡化為DS EWMA AL管制圖,當EWMA的權重 且抽樣間隔固定時,DSVSI EWMA AL管制圖則簡化為DS AL管制圖。最後以資料分析比較 DSVSI EWMA AL管制圖、DSVSI AL管制圖 、DS EWMA AL管制圖、Optimal DS AL管制圖、 DS AL管制圖 、 Optimal VSI AL管制圖(Yang 2013a) 、AL管制圖(Yang 2013)和DS X-bar and S管制圖(He and Grigoryan 2004)之失控的偵測績效。 zh_TW dc.description.tableofcontents 壹、 緒論 8一、 前言 8二、 研究動機 10三、 研究目的與方法 10貳、 DS AL管制圖的設計與績效衡量 11一、 DS AL管制圖的追蹤統計量之分配 11二、 DS AL管制圖的設計 14三、 DS AL管制圖的績效衡量 16四、 敏感度分析 20參、 最適DS AL管制圖的設計與績效衡量 40一、 設計最小ARL1下的DS AL管制圖 40二、 最適DS AL管制圖和文獻上存在的相關管制圖之績效比較 42肆、 DSVSI EWMA AL管制圖的設計與績效衡量 68一、 DSVSI EWMA AL管制圖的追蹤統計量之分配與設計 68二、 DSVSI EWMA AL管制圖的績效衡量 71三、 敏感度分析 78四、 DSVSI EWMA AL管制圖和其他相關管制圖節省績效比較 81伍、 結論與建議 84陸、 參考文獻 110 zh_TW dc.format.extent 3024502 bytes - dc.format.mimetype application/pdf - dc.language.iso en_US - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0101354022 en_US dc.subject (關鍵詞) 管制圖 zh_TW dc.title (題名) 具變動抽樣間隔的雙次抽樣損失管制圖之設計 zh_TW dc.title (題名) 沒英文名稱 zh_TW dc.type (資料類型) thesis en dc.relation.reference (參考文獻) 陸、 參考文獻Costa, A. F. (1998). Joint X-bar and R charts with variable parameters. IIE transactions, 30(6), 505-514.Chen, G., and Cheng, S. W. (1998). Max chart: combining X-bar chart and S chart. Statistica Sinica, 8(1), 263-271.Carot, V., Jabaloyes, J. M., and Carot, T. (2002). Combined double sampling and variable sampling interval X-bar chart. International Journal of Production Research,40(9), 2175-2186.Daudin, J. J. (1992). Double Sampling X-bar Charts. Journal of Quality Technology , 24 78-87.Farebrother, R. W. (1984). Algorithm AS 204: The distribution of a positive linear combination of χ 2 random variables. Applied Statistics, 332-339.Grabov, P., and Ingman, D. (1996). Adaptive control limits for bivariate process monitoring. Journal of quality technology, 28(3), 320-330.He, D., and Grigoryan, A. (2002). Construction of double sampling s‐control charts for agile manufacturing. Quality and reliability engineering international,18(4), 343-355.He, D., and Grigoryan, A. (2006). Joint statistical design of double sampling X-bar and S charts. European Journal of Operational Research, 168(1), 122-142.Imhof, J. P. (1961). Computing the distribution of quadratic forms in normal variables. Biometrika, 419-426.Liu, H., Tang, Y., and Zhang, H. H. (2009). A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables. Computational Statistics & Data Analysis, 53(4), 853-856.Lee, P. H., Chang, Y. C., and Torng, C. C. (2012). A design of S control charts with a combined double sampling and variable sampling interval scheme.Communications in Statistics-Theory and Methods, 41(1), 153-165.Moschopoulos, P. G., and Canada, W. B. (1984). The distribution function of a linear combination of chi-squares. Computers & mathematics with applications,10(4), 383-386.Patnaik, P. B. (1949). The non-central χ2-and F-distributions and their pplications. Biometrika, 36(1-2), 202-232.Page, E. S. (1954). Continuous inspection schemes. Biometrika, 100-115.Roberts, S. W. (1958). Properties of control chart zone tests. Bell System Technical Journal, 37(1), 83-114.Reynolds, M. R., Amin, R. W., Arnold, J. C., and Nachlas, J. A. (1988). X-bar charts with variable sampling intervals. Technometrics, 30(2), 181-192.Shewhart, W. A. (1931). Economic control of quality of manufactured product(Vol. 509). ASQ Quality Press.Sullivan, J. H., and Woodall, W. H. (1996). A comparison of multivariate control charts for individual observations. Journal of Quality Technology, 28(4).Spiring, F. A., and Cheng, S. W. (1998). An alternate variables control chart: the univariate and multivariate case. Statistica Sinica, 8(1), 273-287.Wu, Z., and Tian, Y. (2006). Weighted-loss-function control charts. The International Journal of Advanced Manufacturing Technology, 31(1-2), 107-115.Yang, S. F. (2013a). Using a Single Average Loss Control Chart to Monitor Process Mean and Variability. Communications in Statistics-Simulation and Computation, 42(7), 1549-1562.Yang, S. F. (2013b). Using a new VSI EWMA average loss control chart to monitor changes in the difference between the process mean and target and/or the process variability. Applied Mathematical Modelling, 37(16), 7973-7982. zh_TW