Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 Lasso顯著性檢定與向前逐步迴歸變數選取方法之比較
A Comparison between Lasso Significance Test and Forward Stepwise Selection Method
作者 鄒昀庭
Tsou, Yun Ting
貢獻者 黃子銘
Huang, Tzee Ming
鄒昀庭
Tsou, Yun Ting
關鍵詞 變數選取
最小絕對壓縮挑選機制
向前逐步迴歸
拔靴法
Variable Selection
Least Absolute Shrinkage and Selection Operator
Forward Stepwise Regression
Bootstrap
日期 2013
上傳時間 6-Aug-2014 11:39:39 (UTC+8)
摘要   迴歸模式的變數選取是很重要的課題,Tibshirani於1996年提出最小絕對壓縮挑選機制(Least Absolute Shrinkage and Selection Operator;簡稱Lasso),主要特色是能在估計的過程中自動完成變數選取。但因為Lasso本身並沒有牽扯到統計推論的層面,因此2014年時Lockhart et al.所提出的Lasso顯著性檢定是重要的突破。由於Lasso顯著性檢定的建構過程與傳統向前逐步迴歸相近,本研究接續Lockhart et al.(2014)對兩種變數選取方法的比較,提出以Bootstrap來改良傳統向前逐步迴歸;最後並比較Lasso、Lasso顯著性檢定、傳統向前逐步迴歸、以AIC決定變數組合的向前逐步迴歸,以及以Bootstrap改良的向前逐步迴歸等五種方法變數選取之效果。最後發現Lasso顯著性檢定雖然不容易犯型一錯誤,選取變數時卻過於保守;而以Bootstrap改良的向前逐步迴歸跟Lasso顯著性檢定一樣不容易犯型一錯誤,而選取變數上又比起Lasso顯著性檢定更大膽,因此可算是理想的方法改良結果。
Variable selection of a regression model is an essential topic. In 1996, Tibshirani proposed a method called Lasso (Least Absolute Shrinkage and Selection Operator), which completes the matter of selecting variable set while estimating the parameters. However, the original version of Lasso does not provide a way for making inference. Therefore, the significance test for lasso proposed by Lockhart et al. in 2014 is an important breakthrough. Based on the similarity of construction of statistics between Lasso significance test and forward selection method, continuing the comparisons between the two methods from Lockhart et al. (2014), we propose an improved version of forward selection method by bootstrap. And at the second half of our research, we compare the variable selection results of Lasso, Lasso significance test, forward selection, forward selection by AIC, and forward selection by bootstrap. We find that although the Type I error probability for Lasso Significance Test is small, the testing method is too conservative for including new variables. On the other hand, the Type I error probability for forward selection by bootstrap is also small, yet it is more aggressive in including new variables. Therefore, based on our simulation results, the bootstrap improving forward selection is rather an ideal variable selecting method.
參考文獻 [1] Frank I. and Friedman J. (1993) A Statistical View of Some Chemometrics Regression Tools, Technometrics, 35, p.109-148.
[2] Tibshirani R. J. (1996). Regression Shrinkage and Selection via the LASSO, Journal of the Royal Statistical Society, Series B, Volume 58, p.267-288.
[3] Osborne M. R., Presnell B., and Turlach B. A. (2000) On the Lasso and Its Dual, Journal of Computational and Graphical Statistics 9, p.319-337.
[4] Fan J. and Li R. (2001) Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties, Journal of the American Statistical Association 96, p.1348-1360.
[5] Miller A. (2002) Subset Selection in Regression, Second Edition, Chapman & Hall/CRC.
[6] Zou H. (2006) The Adaptive Lasso and Its Oracle Properties, Journal of the American Statistical Association, 101, p.1418-1429.
[7] 葉世弘(2009),運用aGLasso在多變量線性迴歸模型的模型選取,國立成功大學碩士論文。
[8] Cortez P., Teixeira J., Cerdeira A., Almeida F., Matos T., and Reis J. (2009) Using Data Mining for Wine Quality Assessment, Proceedings of the 12th International Conference on Discovery Science, p.66-79, October 03-05, 2009, Porto, Portugal.
[9] Kyung M., Gill J., Ghosh M., and Casella G. (2010) Penalized regression, standard errors, and Bayesian Lassos, Bayesian Analysis, 5, p.369-412.
[10] Lockhart R., Taylor J., Tibshirani R., and Tibshirani R. J. (2014) A Significance Test for the Lasso, Annals of Statistics, Vol. 42, No. 2, p.413-468.
[11] Kass R. E., Eden U. T., and Brown E. N. (2014) Analysis of Neural Data, Springer.
描述 碩士
國立政治大學
統計研究所
101354002
102
資料來源 http://thesis.lib.nccu.edu.tw/record/#G1013540022
資料類型 thesis
dc.contributor.advisor 黃子銘zh_TW
dc.contributor.advisor Huang, Tzee Mingen_US
dc.contributor.author (Authors) 鄒昀庭zh_TW
dc.contributor.author (Authors) Tsou, Yun Tingen_US
dc.creator (作者) 鄒昀庭zh_TW
dc.creator (作者) Tsou, Yun Tingen_US
dc.date (日期) 2013en_US
dc.date.accessioned 6-Aug-2014 11:39:39 (UTC+8)-
dc.date.available 6-Aug-2014 11:39:39 (UTC+8)-
dc.date.issued (上傳時間) 6-Aug-2014 11:39:39 (UTC+8)-
dc.identifier (Other Identifiers) G1013540022en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/68228-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計研究所zh_TW
dc.description (描述) 101354002zh_TW
dc.description (描述) 102zh_TW
dc.description.abstract (摘要)   迴歸模式的變數選取是很重要的課題,Tibshirani於1996年提出最小絕對壓縮挑選機制(Least Absolute Shrinkage and Selection Operator;簡稱Lasso),主要特色是能在估計的過程中自動完成變數選取。但因為Lasso本身並沒有牽扯到統計推論的層面,因此2014年時Lockhart et al.所提出的Lasso顯著性檢定是重要的突破。由於Lasso顯著性檢定的建構過程與傳統向前逐步迴歸相近,本研究接續Lockhart et al.(2014)對兩種變數選取方法的比較,提出以Bootstrap來改良傳統向前逐步迴歸;最後並比較Lasso、Lasso顯著性檢定、傳統向前逐步迴歸、以AIC決定變數組合的向前逐步迴歸,以及以Bootstrap改良的向前逐步迴歸等五種方法變數選取之效果。最後發現Lasso顯著性檢定雖然不容易犯型一錯誤,選取變數時卻過於保守;而以Bootstrap改良的向前逐步迴歸跟Lasso顯著性檢定一樣不容易犯型一錯誤,而選取變數上又比起Lasso顯著性檢定更大膽,因此可算是理想的方法改良結果。zh_TW
dc.description.abstract (摘要) Variable selection of a regression model is an essential topic. In 1996, Tibshirani proposed a method called Lasso (Least Absolute Shrinkage and Selection Operator), which completes the matter of selecting variable set while estimating the parameters. However, the original version of Lasso does not provide a way for making inference. Therefore, the significance test for lasso proposed by Lockhart et al. in 2014 is an important breakthrough. Based on the similarity of construction of statistics between Lasso significance test and forward selection method, continuing the comparisons between the two methods from Lockhart et al. (2014), we propose an improved version of forward selection method by bootstrap. And at the second half of our research, we compare the variable selection results of Lasso, Lasso significance test, forward selection, forward selection by AIC, and forward selection by bootstrap. We find that although the Type I error probability for Lasso Significance Test is small, the testing method is too conservative for including new variables. On the other hand, the Type I error probability for forward selection by bootstrap is also small, yet it is more aggressive in including new variables. Therefore, based on our simulation results, the bootstrap improving forward selection is rather an ideal variable selecting method.en_US
dc.description.tableofcontents 第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 1
1.3 研究流程 2
第二章 文獻回顧 3
2.1 Lasso 3
2.2 由統計推論的角度探討Lasso 5
2.3 Lasso顯著性檢定 5
2.4 由分配的角度比較Lasso顯著性檢定與向前逐步迴歸 6
第三章 改良向前逐步迴歸 9
3.1 驗證向前逐步迴歸之缺陷 9
3.2 透過Bootstrap改良向前逐步迴歸 11
第四章 模擬資料分析 13
4.1 模擬設計與流程 13
4.2 模擬結果 16
第五章 實證資料分析 24
5.1 資料背景 24
5.2 定義問題與方法 25
5.3 變數選取 26
第六章 結論與建議 30
6.1 結論 30
6.2 限制與建議 31
參考文獻 33
zh_TW
dc.format.extent 878632 bytes-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G1013540022en_US
dc.subject (關鍵詞) 變數選取zh_TW
dc.subject (關鍵詞) 最小絕對壓縮挑選機制zh_TW
dc.subject (關鍵詞) 向前逐步迴歸zh_TW
dc.subject (關鍵詞) 拔靴法zh_TW
dc.subject (關鍵詞) Variable Selectionen_US
dc.subject (關鍵詞) Least Absolute Shrinkage and Selection Operatoren_US
dc.subject (關鍵詞) Forward Stepwise Regressionen_US
dc.subject (關鍵詞) Bootstrapen_US
dc.title (題名) Lasso顯著性檢定與向前逐步迴歸變數選取方法之比較zh_TW
dc.title (題名) A Comparison between Lasso Significance Test and Forward Stepwise Selection Methoden_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] Frank I. and Friedman J. (1993) A Statistical View of Some Chemometrics Regression Tools, Technometrics, 35, p.109-148.
[2] Tibshirani R. J. (1996). Regression Shrinkage and Selection via the LASSO, Journal of the Royal Statistical Society, Series B, Volume 58, p.267-288.
[3] Osborne M. R., Presnell B., and Turlach B. A. (2000) On the Lasso and Its Dual, Journal of Computational and Graphical Statistics 9, p.319-337.
[4] Fan J. and Li R. (2001) Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties, Journal of the American Statistical Association 96, p.1348-1360.
[5] Miller A. (2002) Subset Selection in Regression, Second Edition, Chapman & Hall/CRC.
[6] Zou H. (2006) The Adaptive Lasso and Its Oracle Properties, Journal of the American Statistical Association, 101, p.1418-1429.
[7] 葉世弘(2009),運用aGLasso在多變量線性迴歸模型的模型選取,國立成功大學碩士論文。
[8] Cortez P., Teixeira J., Cerdeira A., Almeida F., Matos T., and Reis J. (2009) Using Data Mining for Wine Quality Assessment, Proceedings of the 12th International Conference on Discovery Science, p.66-79, October 03-05, 2009, Porto, Portugal.
[9] Kyung M., Gill J., Ghosh M., and Casella G. (2010) Penalized regression, standard errors, and Bayesian Lassos, Bayesian Analysis, 5, p.369-412.
[10] Lockhart R., Taylor J., Tibshirani R., and Tibshirani R. J. (2014) A Significance Test for the Lasso, Annals of Statistics, Vol. 42, No. 2, p.413-468.
[11] Kass R. E., Eden U. T., and Brown E. N. (2014) Analysis of Neural Data, Springer.
zh_TW