dc.contributor | 應數系 | en_US |
dc.creator (作者) | 李明融 | zh_TW |
dc.creator (作者) | Li,Meng-Rong | en_US |
dc.creator (作者) | 謝宗翰 | zh_TW |
dc.creator (作者) | Shieh,Tzong-Hann | en_US |
dc.creator (作者) | 余清祥 | zh_TW |
dc.creator (作者) | Yue,C. Jack | en_US |
dc.creator (作者) | 李玢 | zh_TW |
dc.creator (作者) | Lee,Pin | en_US |
dc.creator (作者) | 李育佐 | zh_TW |
dc.creator (作者) | Li,Yu-Tso | en_US |
dc.date (日期) | 2011.08 | en_US |
dc.date.accessioned | 7-Aug-2014 10:05:02 (UTC+8) | - |
dc.date.available | 7-Aug-2014 10:05:02 (UTC+8) | - |
dc.date.issued (上傳時間) | 7-Aug-2014 10:05:02 (UTC+8) | - |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/68406 | - |
dc.description.abstract (摘要) | In this paper we used the method of parabola approximation to study some nonlinear differential equations. We derive exact, explicit solutions to the parabolic equations and use this analytical results in the numerical computations for the general equations. We then draw the comparison of between the solutions of original and approximated equations. Moreover, we apply such method to the population growth problem. The error of the difference between the solutions of the differential equations and the numerical results caused by the discrete approximations is reasonable. | en_US |
dc.format.extent | 654974 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.relation (關聯) | Taiwanese Journal of Mathematics,15(4),1841-1857 | en_US |
dc.subject (關鍵詞) | Nonlinear differential equation;Approximation;Population growth;Difference equation | en_US |
dc.title (題名) | PARABOLA METHOD IN ORDINARY DIFFERENTIAL EQUATION | en_US |
dc.type (資料類型) | article | en |