Publications-Books & Chapters in Books

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

TitleTrading Strategies Based on K-Means Clustering and Regression Model
Creator陳樹衡
Chen,Shu-Heng
Contributor經濟系
Date2007
Date Issued14-Aug-2014 12:05:45 (UTC+8)
SummaryThis paper outlines a data mining approach to the analysis and prediction of the trend of stock prices. The approach consists of three steps, namely, partitioning, analysis and prediction. A commonly used k-means clustering algorithm is used to partition stock price time series data. After data partition, linear regression is used to analyse the trend within each cluster. The results of the linear regression are then used for trend prediction for windowed time series data. Using our trend prediction methodology, we propose a trading strategy TTP (Trading based on Trend Prediction). Some results of applying TTP to stock trading are reported. The trading performance is compared with some practical trading strategies and other machine learning methods. Given the volatility nature of stock prices the methodology achieved limited success for a few countries and time periods. Further analysis of the results may lead to further improvement in the methodology. Although the proposed approach is designed for stock trading, it can be applied to the trend analysis of any time series, such as the time series of economic indicators.
RelationComputational Intelligence in Economics and Finance 2007, pp 123-134
Typebook/chapter
dc.contributor 經濟系en_US
dc.creator (作者) 陳樹衡zh_TW
dc.creator (作者) Chen,Shu-Hengen_US
dc.date (日期) 2007en_US
dc.date.accessioned 14-Aug-2014 12:05:45 (UTC+8)-
dc.date.available 14-Aug-2014 12:05:45 (UTC+8)-
dc.date.issued (上傳時間) 14-Aug-2014 12:05:45 (UTC+8)-
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/68727-
dc.description.abstract (摘要) This paper outlines a data mining approach to the analysis and prediction of the trend of stock prices. The approach consists of three steps, namely, partitioning, analysis and prediction. A commonly used k-means clustering algorithm is used to partition stock price time series data. After data partition, linear regression is used to analyse the trend within each cluster. The results of the linear regression are then used for trend prediction for windowed time series data. Using our trend prediction methodology, we propose a trading strategy TTP (Trading based on Trend Prediction). Some results of applying TTP to stock trading are reported. The trading performance is compared with some practical trading strategies and other machine learning methods. Given the volatility nature of stock prices the methodology achieved limited success for a few countries and time periods. Further analysis of the results may lead to further improvement in the methodology. Although the proposed approach is designed for stock trading, it can be applied to the trend analysis of any time series, such as the time series of economic indicators.en_US
dc.language.iso en_US-
dc.relation (關聯) Computational Intelligence in Economics and Finance 2007, pp 123-134en_US
dc.title (題名) Trading Strategies Based on K-Means Clustering and Regression Modelen_US
dc.type (資料類型) book/chapteren