Publications-Theses
Article View/Open
Publication Export
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
Title | 在Heston架構下評價VIX選擇權與實證分析 Pricing VIX Options under the Heston Framework and Empirical Analysis |
Creator | 李多達 Lido, Daouda |
Contributor | 林士貴 Lin, Shih Kuei 李多達 Lido, Daouda |
Key Words | Heston Model VIX Options Stochastic Volatility Mean-reversion Volatility Smile Calibration Option Pricing |
Date | 2013 |
Date Issued | 25-Aug-2014 15:17:21 (UTC+8) |
Summary | 在Heston架構下評價VIX選擇權與實證分析 In this thesis, we give a quasi-thorough review of the different VIX options pricing models in the literature, before developing the Heston stochastic volatility model as it pertains to pricing VIX options. Our empirical tests and results show that the Heston model is able to quite capture empirical characteristics of the VIX, although the model does exhibit some inconsistencies with regards to the stability of the parameters over time. Instead of invalidating the model, this shows that the Heston model setup is acceptable as an alternative to pricing VIX options until the advent of a better model. |
參考文獻 | Bibliography 1. Bakshi, G., C. Cao and Z. Chen (1997). "Empirical performance of alternative option pricing models." The Journal of Finance 52(5): 2003-2049. 2. Black, F. and M. Scholes (1973). "The pricing of options and corporate liabilities." The journal of political economy: 637-654. 3. Carr, P. and R. Lee (2007). "Realized volatility and variance: Options via swaps." Risk 20(5): 76-83. 4. Carr, P. and R. Lee (2008). Robust replication of volatility derivatives. PRMIA award for Best Paper in Derivatives, MFA 2008 Annual Meeting. 5. Carr, P. and R. Lee (2009). "Volatility derivatives." Annu. Rev. Financ. Econ. 1(1): 319-339. 6. Christoffersen, P., S. Heston and K. Jacobs (2009). "The shape and term structure of the index option smirk: Why multifactor stochastic volatility models work so well." Management Science 55(12): 1914-1932. 7. Cox, J. C., J. E. Ingersoll Jr and S. A. Ross (1985). "A theory of the term structure of interest rates." Econometrica: Journal of the Econometric Society: 385-407. 8. Detemple, J. and C. Osakwe (2000). "The valuation of volatility options." European Finance Review 4(1): 21-50. 9. Detlefsen, K. and W. K. Härdle (2006). Calibration risk for exotic options, SFB 649 discussion paper. 10. Feller, W. (1951). "Two singular diffusion problems." Annals of mathematics: 173-182. 11. Gatheral, J. (2006). The volatility surface: a practitioner`s guide, John Wiley & Sons. 12. Goard, J. and M. Mazur (2013). "Stochastic Volatility Models and the Pricing of Vix Options." Mathematical Finance 23(3): 439-458. 13. Grünbichler, A. and F. A. Longstaff (1996). "Valuing futures and options on volatility." Journal of Banking & Finance 20(6): 985-1001. 14. Heston, S. L. (1993). "A closed-form solution for options with stochastic volatility with applications to bond and currency options." Review of financial studies 6(2): 327-343. 15. Lin, Y. N. and C. H. Chang (2009). "VIX option pricing." Journal of Futures Markets 29(6): 523-543. 16. Moodley, N. (2005). "The Heston model: A practical approach with Matlab code." Bachelor Thesis, University of the Witwatersrand, Johannesburg, math. nyu. edu. 17. Psychoyios, D. and G. Skiadopoulos (2006). "Volatility options: Hedging effectiveness, pricing, and model error." Journal of Futures Markets 26(1): 1-31. 18. Simon, D. P. and J. Campasano (2012). "The VIX Futures Basis: Evidence and Trading Strategies." The Journal of Derivatives 21(3): 54-69. 19. Wang, Z. and R. T. Daigler (2011). "The performance of VIX option pricing models: Empirical evidence beyond simulation." Journal of Futures Markets 31(3): 251-281. 20. Whaley, R. E. (1993). "Derivatives on market volatility: Hedging tools long overdue." The journal of Derivatives 1(1): 71-84. 21. Whaley, R. E. (2009). "Understanding the VIX." The Journal of Portfolio Management 35(3): 98-105. 22. Zhang, J. E. and Y. Zhu (2006). "VIX futures." Journal of Futures Markets 26(6): 521-531. |
Description | 碩士 國立政治大學 金融研究所 100352032 102 |
資料來源 | http://thesis.lib.nccu.edu.tw/record/#G1003520322 |
Type | thesis |
dc.contributor.advisor | 林士貴 | zh_TW |
dc.contributor.advisor | Lin, Shih Kuei | en_US |
dc.contributor.author (Authors) | 李多達 | zh_TW |
dc.contributor.author (Authors) | Lido, Daouda | en_US |
dc.creator (作者) | 李多達 | zh_TW |
dc.creator (作者) | Lido, Daouda | en_US |
dc.date (日期) | 2013 | en_US |
dc.date.accessioned | 25-Aug-2014 15:17:21 (UTC+8) | - |
dc.date.available | 25-Aug-2014 15:17:21 (UTC+8) | - |
dc.date.issued (上傳時間) | 25-Aug-2014 15:17:21 (UTC+8) | - |
dc.identifier (Other Identifiers) | G1003520322 | en_US |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/69200 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 金融研究所 | zh_TW |
dc.description (描述) | 100352032 | zh_TW |
dc.description (描述) | 102 | zh_TW |
dc.description.abstract (摘要) | 在Heston架構下評價VIX選擇權與實證分析 | zh_TW |
dc.description.abstract (摘要) | In this thesis, we give a quasi-thorough review of the different VIX options pricing models in the literature, before developing the Heston stochastic volatility model as it pertains to pricing VIX options. Our empirical tests and results show that the Heston model is able to quite capture empirical characteristics of the VIX, although the model does exhibit some inconsistencies with regards to the stability of the parameters over time. Instead of invalidating the model, this shows that the Heston model setup is acceptable as an alternative to pricing VIX options until the advent of a better model. | en_US |
dc.description.tableofcontents | Table of Content: Pricing VIX Options under Heston Framework and Empirical Analysis I. Introduction 4 II. Motivation 5 1. Historical Background 7 1.1. Volatility Swaps 7 1.2. Variance Swaps 7 2. VIX Index 8 2.1. VIX Calculation Formula 9 2.2. VIX Futures 10 2.3. VIX Options 11 III. VIX Modeling review 11 VI. The Model 19 1. The Heston Model: Stochastic Volatility 19 2. Solution to the Heston Model 20 V. Methodology & Data 21 1. Data 21 2. Model Calibration 22 VI. Empirical Results 23 1. Parameter Estimates 23 2. Parameter Variation Over Time 25 3. The Effects Of Changing Parameters 28 VII. Conclusion 30 A. Bibliography 32 B. Appendix 34 | zh_TW |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G1003520322 | en_US |
dc.subject (關鍵詞) | Heston Model | en_US |
dc.subject (關鍵詞) | VIX Options | en_US |
dc.subject (關鍵詞) | Stochastic Volatility | en_US |
dc.subject (關鍵詞) | Mean-reversion | en_US |
dc.subject (關鍵詞) | Volatility Smile | en_US |
dc.subject (關鍵詞) | Calibration | en_US |
dc.subject (關鍵詞) | Option Pricing | en_US |
dc.title (題名) | 在Heston架構下評價VIX選擇權與實證分析 | zh_TW |
dc.title (題名) | Pricing VIX Options under the Heston Framework and Empirical Analysis | en_US |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | Bibliography 1. Bakshi, G., C. Cao and Z. Chen (1997). "Empirical performance of alternative option pricing models." The Journal of Finance 52(5): 2003-2049. 2. Black, F. and M. Scholes (1973). "The pricing of options and corporate liabilities." The journal of political economy: 637-654. 3. Carr, P. and R. Lee (2007). "Realized volatility and variance: Options via swaps." Risk 20(5): 76-83. 4. Carr, P. and R. Lee (2008). Robust replication of volatility derivatives. PRMIA award for Best Paper in Derivatives, MFA 2008 Annual Meeting. 5. Carr, P. and R. Lee (2009). "Volatility derivatives." Annu. Rev. Financ. Econ. 1(1): 319-339. 6. Christoffersen, P., S. Heston and K. Jacobs (2009). "The shape and term structure of the index option smirk: Why multifactor stochastic volatility models work so well." Management Science 55(12): 1914-1932. 7. Cox, J. C., J. E. Ingersoll Jr and S. A. Ross (1985). "A theory of the term structure of interest rates." Econometrica: Journal of the Econometric Society: 385-407. 8. Detemple, J. and C. Osakwe (2000). "The valuation of volatility options." European Finance Review 4(1): 21-50. 9. Detlefsen, K. and W. K. Härdle (2006). Calibration risk for exotic options, SFB 649 discussion paper. 10. Feller, W. (1951). "Two singular diffusion problems." Annals of mathematics: 173-182. 11. Gatheral, J. (2006). The volatility surface: a practitioner`s guide, John Wiley & Sons. 12. Goard, J. and M. Mazur (2013). "Stochastic Volatility Models and the Pricing of Vix Options." Mathematical Finance 23(3): 439-458. 13. Grünbichler, A. and F. A. Longstaff (1996). "Valuing futures and options on volatility." Journal of Banking & Finance 20(6): 985-1001. 14. Heston, S. L. (1993). "A closed-form solution for options with stochastic volatility with applications to bond and currency options." Review of financial studies 6(2): 327-343. 15. Lin, Y. N. and C. H. Chang (2009). "VIX option pricing." Journal of Futures Markets 29(6): 523-543. 16. Moodley, N. (2005). "The Heston model: A practical approach with Matlab code." Bachelor Thesis, University of the Witwatersrand, Johannesburg, math. nyu. edu. 17. Psychoyios, D. and G. Skiadopoulos (2006). "Volatility options: Hedging effectiveness, pricing, and model error." Journal of Futures Markets 26(1): 1-31. 18. Simon, D. P. and J. Campasano (2012). "The VIX Futures Basis: Evidence and Trading Strategies." The Journal of Derivatives 21(3): 54-69. 19. Wang, Z. and R. T. Daigler (2011). "The performance of VIX option pricing models: Empirical evidence beyond simulation." Journal of Futures Markets 31(3): 251-281. 20. Whaley, R. E. (1993). "Derivatives on market volatility: Hedging tools long overdue." The journal of Derivatives 1(1): 71-84. 21. Whaley, R. E. (2009). "Understanding the VIX." The Journal of Portfolio Management 35(3): 98-105. 22. Zhang, J. E. and Y. Zhu (2006). "VIX futures." Journal of Futures Markets 26(6): 521-531. | zh_TW |