Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 以耐延遲車載網路方式,收集路況資訊與彙整時程評估
Gathering Road Traffic Information and Consolidating Travel Time Estimation using Vehicular Delay Tolerant Networks
作者 王林瀚
Wang, Lin Han
貢獻者 蔡子傑
Tsai, Tzu Chieh
王林瀚
Wang, Lin Han
關鍵詞 耐延遲網路
耐延遲車載網路
路況資訊
Delay Tolerant Network
Vehicular Delay Tolerant Network
Road Traffic Information
日期 2013
上傳時間 25-Aug-2014 15:21:23 (UTC+8)
摘要 許多國家正面臨因嚴重的交通壅塞所帶來龐大的經濟損失,同樣在台灣也面臨相同問題,根本解決之道就是找出壅塞路段,並即時地告知車輛駕駛以迴避此路段。因此如何有效率地偵測出壅塞路段,是當前重要的議題。以往大多透過長期所累積的統計數據,針對各路段收集行駛於該路段所有車輛的平均速度,來獲得該路段的交通狀況,但卻無法立即反應即時路況。
因此我們提出以耐延遲車載網路方式,收集路況資訊與彙整旅途時程,透過具有全球定位系統(GPS)以及無線網路的車輛來進行路況交通資訊的收整與交換。再透過本研究所提出路況交通覺知路由協定(RTARP),以One-Hop Controlled Flooding的傳輸方式在節點與節點相遇時進行路況資訊的傳送,進而交換節點彼此間各自所存放各路段的路況資訊。
模擬實驗結果證明我們所提出的路由協定在路況交通資訊交換中,有效地減少網路傳輸負載、提高訊息送達成功率以及路況交通資訊(RTI)正確率。
Many countries are concerning about the huge economic losses caused by the critical traffic congestion. We have the same problem in Taiwan. The solutions lie in finding the road section with traffic congestion first and informing drivers to avoid that section. But how to detect the road section with traffic congestion effectively is the most important issue of this research. Conventionally, the real-time road traffic is mostly predicted by long-term accumulated statistics calculated by the collection of the average speed of cars on the same road section. But this way can’t provide the real-time road traffic immediately.
Based on vehicles with GPS and the capability of WiFi, we proposed gathering road traffic information and consolidating travel time estimation using vehicular delay tolerant networks. We also proposed the Road Traffic Awareness Routing Protocol (RTARP) to exchange the road traffic information preserved individually by One-Hop Controlled Flooding during nodes’ encounter.
The results of simulations prove the routing protocol we proposed can effectively reduce the transmission overhead, improve the delivery ratio and the accuracy of the road traffic information.
參考文獻 [1] D. Schrank, B. Eisele and T. Lomax, "TTI’s 2012 Urban Mobility Report." Texas Transportation Institute, 2012.
[2] B. Tsai, "The Application of Real Time Traffic Information broadcasting via RDS-TMC." in Geographic Information System Vol.2 No.4, 2008, pp. 20-25.
[3] T. Fujiki, M. Kirimura, T. Umedu and T. Higashino, "Efficient Acquisition of Local Traffic Information Using Inter-Vehicle Communication with Queries." in Proceedings of Intelligent Transportation Systems Conference (ITSC 2007) , 2007, pp.241-246.
[4] T. Nadeem, S. Dashtinezhad, C. Liao, and L. Iftode, "TrafficView: A Scalable Traffic Monitoring System." in Proceedings of IEEE International Conference on Mobile Data Management, 2004, pp.13-26.
[5] N. Shibata, T. Terauchi, T. Kitani, K. Yasumoto, M. Ito, and T. Higashino, "A Method for Sharing Traffic Jam Information Using Inter-Vehicle Communication." in Proceedings of Annual International Conference on Mobile and Ubiquitous Systems, 2006, pp. 1-7.
[6] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K.Fall, and H. Weiss, "Delay-Tolerant Networking Architecture," RFC4838, April 2007, [Online]. Available: ftp://ftp.rfc-editor.org/innotes/rfc4838.txt.
[7] S. Burleigh, A. Hooke, L. Torgerson, K. Fall, V. Cerf, B. Durst, K. Scott, and H.Weiss, "Delay-tolerant networking: an approach to interplanetary internet," IEEE Communications Magazine, vol. 41, no. 6, pp. 128-136, Jun. 2003.
[8] S. Farrell, et al. "InterPlanetary Internet." Internet: http://www.ipnsig.org/, Retrievedon Apr. 20, 2011.
[9] Z. Lu and J. Fan, "Delay/Disruption tolerant network and its application in military communications," in Proc. of the 2010 International Conference on Computer Design and Applications (ICCDA), 2010, pp. 231-234.
[10] Y. Sasaki and Y. Shibata, "Distributed disaster information system in DTN based mobile communication environment," in Proc. of the 2010 International Conference on Broadband, Wireless Computing, Communication and Applications, 2010, pp. 274-277.
[11] E. Brewer, et al. "Technology and Infrastructure for Emerging Regions (TIER)."Internet: http://tier.cs.berkeley.edu/drupal/about, Retrieved on Apr. 20, 2011.
[12] P.Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein,"Energy-efficient computing for wildlife tracking: design tradeoffs and earlyexperiences with ZebraNet," in Proc. of the 10th International Conference onArchitectural Support for Programming Languages and Operating Systems, 2002,pp. 96-107.
[13] M. Martonosi, S. Lyon, L.-S. Peh, V. Poor, and D. Rubenstein. "The ZebraNet Wildlife Tracker." Internet: http://www.princeton.edu/~mrm/zebranet.html, Retrieved on Apr. 20, 2011.
[14] Vahdat A, Becker D (2000) "Epidemic routing for partially connected ad hoc networks." Technical report, Duke University.
[15] Spyropoulos T, Psounis K, Raghavendra CS (2007) "Spray and focus: efficient mobility-assisted routing for heterogeneous and correlated mobility." In: PERCOMW ’07. Washington, DC, USA, pp 79–85.
[16] Lindgren A, Doria A, Schelen O (2003) "Probabilistic routing in intermittently connected networks." In: SIGMOBILE mobile computing communications review. July, pp 7:19–20.
[17] I. Leontiadis and C. Mascolo, “GeOpps: geographical opportunistic routing for vehicular networks.” in IEEE international symposium on a world of wireless, mobile and multimedia networks (WoWMoM), June 2007, pp. 1–6.
[18] Zhao W, Ammar M, Zegura E (2004) “A message ferrying approach for data delivery in sparse mobile ad hoc networks.” In: MobiHoc.
[19] Y. Lin, J. Sheu and G. Chang, “Vehicle Density Detection Scheme in Vehicular Ad Hoc Networks.”, September 2008.
描述 碩士
國立政治大學
資訊科學學系
97971004
102
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0097971004
資料類型 thesis
dc.contributor.advisor 蔡子傑zh_TW
dc.contributor.advisor Tsai, Tzu Chiehen_US
dc.contributor.author (Authors) 王林瀚zh_TW
dc.contributor.author (Authors) Wang, Lin Hanen_US
dc.creator (作者) 王林瀚zh_TW
dc.creator (作者) Wang, Lin Hanen_US
dc.date (日期) 2013en_US
dc.date.accessioned 25-Aug-2014 15:21:23 (UTC+8)-
dc.date.available 25-Aug-2014 15:21:23 (UTC+8)-
dc.date.issued (上傳時間) 25-Aug-2014 15:21:23 (UTC+8)-
dc.identifier (Other Identifiers) G0097971004en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/69227-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學學系zh_TW
dc.description (描述) 97971004zh_TW
dc.description (描述) 102zh_TW
dc.description.abstract (摘要) 許多國家正面臨因嚴重的交通壅塞所帶來龐大的經濟損失,同樣在台灣也面臨相同問題,根本解決之道就是找出壅塞路段,並即時地告知車輛駕駛以迴避此路段。因此如何有效率地偵測出壅塞路段,是當前重要的議題。以往大多透過長期所累積的統計數據,針對各路段收集行駛於該路段所有車輛的平均速度,來獲得該路段的交通狀況,但卻無法立即反應即時路況。
因此我們提出以耐延遲車載網路方式,收集路況資訊與彙整旅途時程,透過具有全球定位系統(GPS)以及無線網路的車輛來進行路況交通資訊的收整與交換。再透過本研究所提出路況交通覺知路由協定(RTARP),以One-Hop Controlled Flooding的傳輸方式在節點與節點相遇時進行路況資訊的傳送,進而交換節點彼此間各自所存放各路段的路況資訊。
模擬實驗結果證明我們所提出的路由協定在路況交通資訊交換中,有效地減少網路傳輸負載、提高訊息送達成功率以及路況交通資訊(RTI)正確率。
zh_TW
dc.description.abstract (摘要) Many countries are concerning about the huge economic losses caused by the critical traffic congestion. We have the same problem in Taiwan. The solutions lie in finding the road section with traffic congestion first and informing drivers to avoid that section. But how to detect the road section with traffic congestion effectively is the most important issue of this research. Conventionally, the real-time road traffic is mostly predicted by long-term accumulated statistics calculated by the collection of the average speed of cars on the same road section. But this way can’t provide the real-time road traffic immediately.
Based on vehicles with GPS and the capability of WiFi, we proposed gathering road traffic information and consolidating travel time estimation using vehicular delay tolerant networks. We also proposed the Road Traffic Awareness Routing Protocol (RTARP) to exchange the road traffic information preserved individually by One-Hop Controlled Flooding during nodes’ encounter.
The results of simulations prove the routing protocol we proposed can effectively reduce the transmission overhead, improve the delivery ratio and the accuracy of the road traffic information.
en_US
dc.description.tableofcontents 第一章 緒論 1
1.1研究背景 1
1.2研究動機 5
1.3研究目的 6
1.4研究流程 7
第二章 相關研究 8
2.1Opportunistic Protocol 8
2.1.1 Epidemic Routing Protocol 8
2.1.2 Spray and Wait Routing Protocol 9
2.2 Prediction-based Protocol 9
2.2.1 Prophet Routing Protocol 9
2.2.2 Geographical Opportunistic Routing 9
2.3 Scheduling Protocol 9
2.3.1 MF Routing Protocol 10
2.4 Road Traffic Related Protocol 10
2.4.1 發起式車輛密度偵測(OVDD) 10
第三章 研究方法與系統架構 12
3.1研究方法 12
3.2系統架構 12
3.2.1路況交通覺知路由協定(RTARP) 12
3.2.2訊息型態 13
3.2.2.1 Hello訊息階段 13
3.2.2.2 Summary Vector訊息階段 14
3.2.2.3 Request訊息階段 17
3.2.2.4 Reply訊息階段 20
3.2.3 路況交通資訊彙整流程 21
3.2.4 道路路況記錄的產生與維持 22
第四章 模擬實驗與結果分析 24
4.1效能評估 24
4.1.1訊息送達率 24
4.1.2傳輸負載 25
4.1.3路況交通資訊平均交換數量 25
4.1.4路況交通資訊正確率 25
4.2 模擬設定 26
4.2.1環境設定 28
4.2.2參數設定 29
4.2.3系統畫面說明 30
4.3 實驗結果 32
4.3.1初始模擬結果 32
4.3.2傳輸距離之效能評估 38
4.3.3道路分割區塊大小之效能評估 42
第五章 結論與未來展望 44
5.1結論 44
5.2未來展望 45
第六章 參考文獻 46
zh_TW
dc.format.extent 1448287 bytes-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0097971004en_US
dc.subject (關鍵詞) 耐延遲網路zh_TW
dc.subject (關鍵詞) 耐延遲車載網路zh_TW
dc.subject (關鍵詞) 路況資訊zh_TW
dc.subject (關鍵詞) Delay Tolerant Networken_US
dc.subject (關鍵詞) Vehicular Delay Tolerant Networken_US
dc.subject (關鍵詞) Road Traffic Informationen_US
dc.title (題名) 以耐延遲車載網路方式,收集路況資訊與彙整時程評估zh_TW
dc.title (題名) Gathering Road Traffic Information and Consolidating Travel Time Estimation using Vehicular Delay Tolerant Networksen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] D. Schrank, B. Eisele and T. Lomax, "TTI’s 2012 Urban Mobility Report." Texas Transportation Institute, 2012.
[2] B. Tsai, "The Application of Real Time Traffic Information broadcasting via RDS-TMC." in Geographic Information System Vol.2 No.4, 2008, pp. 20-25.
[3] T. Fujiki, M. Kirimura, T. Umedu and T. Higashino, "Efficient Acquisition of Local Traffic Information Using Inter-Vehicle Communication with Queries." in Proceedings of Intelligent Transportation Systems Conference (ITSC 2007) , 2007, pp.241-246.
[4] T. Nadeem, S. Dashtinezhad, C. Liao, and L. Iftode, "TrafficView: A Scalable Traffic Monitoring System." in Proceedings of IEEE International Conference on Mobile Data Management, 2004, pp.13-26.
[5] N. Shibata, T. Terauchi, T. Kitani, K. Yasumoto, M. Ito, and T. Higashino, "A Method for Sharing Traffic Jam Information Using Inter-Vehicle Communication." in Proceedings of Annual International Conference on Mobile and Ubiquitous Systems, 2006, pp. 1-7.
[6] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K.Fall, and H. Weiss, "Delay-Tolerant Networking Architecture," RFC4838, April 2007, [Online]. Available: ftp://ftp.rfc-editor.org/innotes/rfc4838.txt.
[7] S. Burleigh, A. Hooke, L. Torgerson, K. Fall, V. Cerf, B. Durst, K. Scott, and H.Weiss, "Delay-tolerant networking: an approach to interplanetary internet," IEEE Communications Magazine, vol. 41, no. 6, pp. 128-136, Jun. 2003.
[8] S. Farrell, et al. "InterPlanetary Internet." Internet: http://www.ipnsig.org/, Retrievedon Apr. 20, 2011.
[9] Z. Lu and J. Fan, "Delay/Disruption tolerant network and its application in military communications," in Proc. of the 2010 International Conference on Computer Design and Applications (ICCDA), 2010, pp. 231-234.
[10] Y. Sasaki and Y. Shibata, "Distributed disaster information system in DTN based mobile communication environment," in Proc. of the 2010 International Conference on Broadband, Wireless Computing, Communication and Applications, 2010, pp. 274-277.
[11] E. Brewer, et al. "Technology and Infrastructure for Emerging Regions (TIER)."Internet: http://tier.cs.berkeley.edu/drupal/about, Retrieved on Apr. 20, 2011.
[12] P.Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein,"Energy-efficient computing for wildlife tracking: design tradeoffs and earlyexperiences with ZebraNet," in Proc. of the 10th International Conference onArchitectural Support for Programming Languages and Operating Systems, 2002,pp. 96-107.
[13] M. Martonosi, S. Lyon, L.-S. Peh, V. Poor, and D. Rubenstein. "The ZebraNet Wildlife Tracker." Internet: http://www.princeton.edu/~mrm/zebranet.html, Retrieved on Apr. 20, 2011.
[14] Vahdat A, Becker D (2000) "Epidemic routing for partially connected ad hoc networks." Technical report, Duke University.
[15] Spyropoulos T, Psounis K, Raghavendra CS (2007) "Spray and focus: efficient mobility-assisted routing for heterogeneous and correlated mobility." In: PERCOMW ’07. Washington, DC, USA, pp 79–85.
[16] Lindgren A, Doria A, Schelen O (2003) "Probabilistic routing in intermittently connected networks." In: SIGMOBILE mobile computing communications review. July, pp 7:19–20.
[17] I. Leontiadis and C. Mascolo, “GeOpps: geographical opportunistic routing for vehicular networks.” in IEEE international symposium on a world of wireless, mobile and multimedia networks (WoWMoM), June 2007, pp. 1–6.
[18] Zhao W, Ammar M, Zegura E (2004) “A message ferrying approach for data delivery in sparse mobile ad hoc networks.” In: MobiHoc.
[19] Y. Lin, J. Sheu and G. Chang, “Vehicle Density Detection Scheme in Vehicular Ad Hoc Networks.”, September 2008.
zh_TW