Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 企業對線上口碑風暴回應策略之研究
Company Strategies in Response to Online Firestorm
作者 林冠達
貢獻者 梁定澎
林冠達
關鍵詞 負面口碑
線上危機管理
線上口碑風暴
Negative Word-of-Mouth
Online Firestorm
Online Crisis Management
日期 2013
上傳時間 1-Oct-2014 13:32:28 (UTC+8)
摘要 口碑一直以為都是企業行銷的重要利器,而同時也是要害之一,且隨著網路的發達和社群網路的發展,對企業的影響也越來越大。而近幾年在媒體中開始出現一個新名詞,用來形容負面口碑在社群媒體中傳播的現象-線上口碑風暴(Online Firestorm)。
線上口碑風暴的相關研究相當的稀少,而在許多口碑的相關研究中也未多著墨,但隨著社群媒體的發展,此現象已越來越普遍,因此有研究探討的價值,所以在本研究中將先定義出線上口碑風暴,並以Google搜尋趨勢設計出測量線上口碑風暴的方式,以利將其從負面口碑的傳播分辨出來,並利用這樣的方法找出六個線上口碑風暴的個案來進行研究,配合Coombs的印象修復理論來進一步分析。
研究結果發現,可以將線上口碑風暴依成因分成「過去不好的服務或產品體驗」、「錯誤的時機情境」和「不適當的聲明或宣傳」,而各類別的最佳回應策略在文中有詳細講述。另外,當企業使用的回應策略越多時,線上口碑風暴持續的時間就可能越久。影響線上口碑風暴的因素有很多,經本研究的討論分析後,發現「負面訊息傳播的平台」、「回應策略的運用」和「企業的規模和性質」為最會影響線上口碑風暴的因素。
Word-of-Mouth (WOM) has been a major marketing tool to the enterprise, but could also be one of its threats. With the development of the Internet and social networks, the impact of WOM on enterprises is also growing. In recent years, the rapid propagation of negative Word-of-Mouth in social media has gained much attention in media and is named “Online Firestorm.”
Academic studies about Online Firestorm are rare, and researchers of Word-of-Mouth have not investigated it. Giving the development of social media, this phenomenon has become increasingly common. Therefore it is important for companies to know and better handle it and for researchers to investigate this new issue. In this study, we will define and measure Online Firestorm though Google Trends. We will also collect data from six cases and analyze how different responding strategies may result in different outcomes.
Research found that Online Firestorm can be categorized into “past bad service or prouduct experience”, “bad timing scenarios” and “inappropriate statements or propaganda” according to the causes of the storm. The best response strategies to all kinds are described in the text. In addition, when used more response strategies, Online Firestorm duration may longer. There are many factors affecting the Online Firestorm, after the discussion and analysis found that "negative information dissemination platform", "the using of response strategies" and "the scale and nature of the enterprises" and as the factors that most likely to affect the Online Firestorm.
參考文獻 中文:
1.吳宜蓁. (2005). 危機傳播 公共關係與語藝觀點的理論與實證 (二版.). 臺北市: 五南.
2.潘淑滿. (2003). 質性研究: 理論與應用. 臺北市: 心理.
3.陳向明. (2002). 社會科學質的硏究. 臺北市: 五南.
英文:
1.Alavi, M., & Carlson, P. (1992). “A review of MIS research and disciplinary development”, Journal of Management Information Systems, Vol.8,No.4, pp.45–62.
2.Andrews, K. R. (1951). “Executive training by the case method”, Harvard Business Review, Vol.29,No.5, pp.58–70.
3.Arndt, J. (1967). “Word of mouth advertising and informal communication”, Advertising Research Foundation,Vol.29,No.3, pp.188–239.
4.Barton, L. (1993). Crisis in organizations: Managing and communicating in the heat of chaos, College Division: South-Western Publishing Company.
5.Benoit, W. L. (1995). Accounts, excuses, and apologies: A theory of image restoration strategies, New York:State University of New York Press Albany.
6.Benoit, W. L. (1997). “Image repair discourse and crisis communication”, Public Relations Review, Vol.23,No.2, pp.177–186.
7.Berger, J., & Milkman, K. L. (2012). “What Makes Online Content Viral?” Journal of Marketing Research, Vol.49,No.2, pp.192–205.
8.Blodgett, J. G., Granbois, D. H., & Walters, R. G. (1993).”The effects of perceived justice on complainants’ negative word-of-mouth behavior and repatronage intentions”, Journal of Retailing,Vol.69,No.4, pp.399–428.
9.Bogdan, R. C., & Biklen, S. K. (1982). Qualitative research for education. , Boston: Allyn and Bacon.
10.Brown, J., Broderick, A. J., & Lee, N. (2007). “Word of mouth communication within online communities: Conceptualizing the online social network”, Journal of Interactive Marketing, Vol.21, No.3, pp.2–20.
11.Brown, J. J., & Reingen, P. H. (1987). “Social ties and word-of-mouth referral behavior”, Journal of Consumer Research, Vol.14,No3, pp.350–362.
12.Buchanan, M. (2003). Nexus: small worlds and the groundbreaking science of networks. New York: W.W. Norton.
13.Chadwick, B. A., Bahr, H. M., & Albrecht, S. L. (1984). “Social science research methods” http://books.google.com.tw/books?id=j_t9AAAAIAAJ
14.Chu, S.-C., & Kim, Y. (2011). “Determinants of consumer engagement in electronic word-of-mouth (eWOM) in social networking sites”, International Journal of Advertising, Vol.30,No.1, pp.47–75.
15.Coombs, T., & Schmidt, L. (2000). “An Empirical Analysis of Image Restoration: Texaco’s Racism Crisis”, Journal of Public Relations Research, Vol.12,No.2, pp.163–178.
16.Coombs, W. T. (1998). “An analytic framework for crisis situations: Better responses from a better understanding of the situation”, Journal of public relations research, Vol.10,No.3, pp.177-191.
17.Coombs, W. T. (2014). Ongoing Crisis Communication: Planning, Managing, and Responding. New York: SAGE Publications.
18.Coombs, W. T., & Holladay, S. J. (2008). “Comparing apology to equivalent crisis response strategies: Clarifying apology’s role and value in crisis communication”, Public Relations Review, Vol.34, No.3, pp.252–257.
19.Diakopoulos, N., De Choudhury, M., & Naaman, M. (2012).”Finding and Assessing Social Media Information Sources in the Context of Journalism”, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems , pp. 2451–2460.ACM.
20.Dichter, E. (1966). “How word-of-mouth advertising works”, Harvard Business Review, Vol.44,No.6, pp.147–160.
21.Gelb, B. D., & Sundaram, S. (2002). “Adapting to “word of mouse”, Business Horizons, Vol.45,No.4, pp.21–25.
22.Goldsmith, R. E., & Horowitz, D. (2006). “Measuring Motivations for Online Opinion Seeking”, Journal of Interactive Advertising, Vol.6,No.2, pp.2–14.
23.Gonzalez-Herrero, A., & Pratt, C. B. (1995). “How to manage a crisis before-or whenever-it hits”, Public Relations Quarterly, Vol.40, pp.25.
24.Gregory, R. P., Rochelle, C. F., & Rochelle, S. G. (2013). “Positive Feedback Trading: Google Trends and Feeder Cattle Futures”, Journal of Applied Business Research , Vol.29, No.5, pp.1325–1332.
25.Herr, P. M., Kardes, F. R., & Kim, J. (1991). “Effects of word-of-mouth and product-attribute information on persuasion: An accessibility-diagnosticity perspective”, Journal of Consumer Research, Vol.17, No.4, pp.454.
26.Lancy, D. F. (1993). Qualitative research in education: An introduction to the major traditions. London: Longman Pub Group.
27.Loewendick, B. A. (1993). “Laying your crisis on the table”, Training & Development, Vol.47, No.11, pp.15–17.
28.Mangold, W. G., & Faulds, D. J. (2009). “Social media: The new hybrid element of the promotion mix”, Business Horizons, Vol.52,No.4, pp.357–365.
29.McNaughton, M. (n.d.). “Lessons From the #McDStories Promoted Trend Controversy”, http://therealtimereport.com/2012/01/24/lessons-from-the-mcdstories-promoted-trend-controversy/
30.McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). “Birds of a Feather: Homophily in Social Networks”. Annual Review of Sociology, Vol.46,No.1, pp.415–444.
31.Merriam, S. B. (1998). Qualitative Research and Case Study Applications in Education. San Francisco: JosseyBass Publishers.
32.Messner, M., & Distaso, M. W. (2008). “The Source Cycle”, Journalism Studies, Vol.9,No.3, pp.447–463.
33.Murray, K. B. (1991). “A test of services marketing theory: consumer information acquisition activities”, The Journal of Marketing, Vol.55,No.1, pp.10–25.
34.Myers, S. A., Zhu, C., & Leskovec, J. (2012). “Information Diffusion and External Influence in Networks”, Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , pp. 33–41. New York: ACM.
35.Pariser, E. (2011). The Filter Bubble: What The Internet Is Hiding From You. UK: Penguin Books.
36.Pearson, C. M., & Clair, J. A. (1998). “Reframing Crisis Management”, Academy of Management Review, Vol.23, No.1, pp.59–76.
37.Pfeffer, J., Zorbach, T., & Carley, K. M. (2014). “Understanding online firestorms: Negative word-of-mouth dynamics in social media networks”, Journal of Marketing Communications, Vol.20, No.1-2, pp.117–128.
38.Richins, M. L. (1983). “Negative Word-of-Mouth by Dissatisfied Consumers: A Pilot Study”, Journal of Marketing, Vol.47, No.1, pp.68.
39.Richins, M. L. (1984). “Word of Mouth Communication a Negative Information”, Advances in Consumer Research, Vol.11, No.1, pp.697–702.
40.Snyder, C. R., Higgins, R. L., & Stucky, R. J. (1983). Excuses: Masquerades in search of grace. New York: Wiley.
41.Stake, R. E. (1995). The art of case study research. New York: Sage Publications
42.Sullivan, D. (2006). “Nielsen NetRatings search engine ratings.” http://marketingpedia.com/Marketing-Library/Search/industryNewsSeptA1.pdf
43.Tkacz, G. (2013). “Predicting Recessions in Real-Time: Mining Google Trends and Electronic Payments Data for Clues.” CD Howe Institute Commentary, No.387.
44.Trusov, M., Bucklin, R. E., & Pauwels, K. (2009). “Effects of Word-of-Mouth Versus Traditional Marketing: Findings from an Internet Social Networking Site”, Journal of Marketing, Vol.73,No.5, pp90–102.
45.Ware, B. L., & Linkugel, W. A. (1973). “They spoke in defense of themselves: On the generic criticism of apologia”, Quarterly Journal of Speech, Vol.59, No.3, pp273–283.
46.Wu, F., & Huberman, B. A. (2007). “Novelty and collective attention. Proceedings of the National Academy of Sciences”, Vol.104, No.45, pp17599–17601.
47.Yin, R. (2003). Case study research: Design and methods. New York: Sage Publications.
描述 碩士
國立政治大學
資訊管理研究所
101356034
102
資料來源 http://thesis.lib.nccu.edu.tw/record/#G1013560341
資料類型 thesis
dc.contributor.advisor 梁定澎zh_TW
dc.contributor.author (Authors) 林冠達zh_TW
dc.creator (作者) 林冠達zh_TW
dc.date (日期) 2013en_US
dc.date.accessioned 1-Oct-2014 13:32:28 (UTC+8)-
dc.date.available 1-Oct-2014 13:32:28 (UTC+8)-
dc.date.issued (上傳時間) 1-Oct-2014 13:32:28 (UTC+8)-
dc.identifier (Other Identifiers) G1013560341en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/70262-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊管理研究所zh_TW
dc.description (描述) 101356034zh_TW
dc.description (描述) 102zh_TW
dc.description.abstract (摘要) 口碑一直以為都是企業行銷的重要利器,而同時也是要害之一,且隨著網路的發達和社群網路的發展,對企業的影響也越來越大。而近幾年在媒體中開始出現一個新名詞,用來形容負面口碑在社群媒體中傳播的現象-線上口碑風暴(Online Firestorm)。
線上口碑風暴的相關研究相當的稀少,而在許多口碑的相關研究中也未多著墨,但隨著社群媒體的發展,此現象已越來越普遍,因此有研究探討的價值,所以在本研究中將先定義出線上口碑風暴,並以Google搜尋趨勢設計出測量線上口碑風暴的方式,以利將其從負面口碑的傳播分辨出來,並利用這樣的方法找出六個線上口碑風暴的個案來進行研究,配合Coombs的印象修復理論來進一步分析。
研究結果發現,可以將線上口碑風暴依成因分成「過去不好的服務或產品體驗」、「錯誤的時機情境」和「不適當的聲明或宣傳」,而各類別的最佳回應策略在文中有詳細講述。另外,當企業使用的回應策略越多時,線上口碑風暴持續的時間就可能越久。影響線上口碑風暴的因素有很多,經本研究的討論分析後,發現「負面訊息傳播的平台」、「回應策略的運用」和「企業的規模和性質」為最會影響線上口碑風暴的因素。
zh_TW
dc.description.abstract (摘要) Word-of-Mouth (WOM) has been a major marketing tool to the enterprise, but could also be one of its threats. With the development of the Internet and social networks, the impact of WOM on enterprises is also growing. In recent years, the rapid propagation of negative Word-of-Mouth in social media has gained much attention in media and is named “Online Firestorm.”
Academic studies about Online Firestorm are rare, and researchers of Word-of-Mouth have not investigated it. Giving the development of social media, this phenomenon has become increasingly common. Therefore it is important for companies to know and better handle it and for researchers to investigate this new issue. In this study, we will define and measure Online Firestorm though Google Trends. We will also collect data from six cases and analyze how different responding strategies may result in different outcomes.
Research found that Online Firestorm can be categorized into “past bad service or prouduct experience”, “bad timing scenarios” and “inappropriate statements or propaganda” according to the causes of the storm. The best response strategies to all kinds are described in the text. In addition, when used more response strategies, Online Firestorm duration may longer. There are many factors affecting the Online Firestorm, after the discussion and analysis found that "negative information dissemination platform", "the using of response strategies" and "the scale and nature of the enterprises" and as the factors that most likely to affect the Online Firestorm.
en_US
dc.description.tableofcontents 致謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 vii
圖目錄 viii
壹、 緒論 1
一、 研究背景與動機 1
二、 研究目的和問題 2
三、 研究流程 2
貳、 文獻探討 5
一、 口碑 5
(一) 口碑的定義 5
(二) 口碑的傳播動機 6
二、 負面口碑 7
(一) 負面口碑的定義 7
(二) 負面口碑傳播動機 8
三、 線上口碑風暴(Online Firestorm) 8
特性 8
四、 口碑風暴及企業危機與聲譽 11
(一) 危機與聲譽 11
(二) 危機的種類 12
(三) 危機的階段 13
五、 危機回應策略 15
(一) 印象修復理論 15
(二) 情境危機傳播理論 18
參、 研究方法與架構 19
一、 研究方法 19
(三) 個案研究 19
二、 研究程序 21
(一) 定義線上口碑風暴 21
(二) 資料收集 22
(三) 資料分析 23
三、 操作變數定義 24
(一) 事件關鍵字定義 24
(二) 回應策略的定義 24
(三) 策略效果衡量 26
肆、 資料分析 28
一、 個案介紹 28
(一) ING-DiBa的廣告事件: 28
(二) McDonald`s的標籤事件 32
(三) NRA的早安訊息事件 35
(四) CelebBoutique的訊息事件 38
(五) 遠通電收的eTag事件 41
(六) NYPD照片分享事件 45
二、 個案分析 47
(一) 過去不好的服務或產品體驗 48
(二) 錯誤的時機情境 50
(三) 不適當的聲明或宣傳 52
伍、 結論與建議 56
一、 研究發現與結論 56
二、 研究貢獻 58
(一) 學術貢獻 58
(二) 實務貢獻 59
三、 研究限制與未來研究方向建議 59
參考文獻 60
附錄一 ING-DiBa的廣告事件 65
附錄二 McDonald`s的標籤事件 68
附錄三 NRA的早安訊息事件 70
附錄四 CelebBoutique的訊息事件 71
附錄五 遠通電收的eTag事件 74
附錄六 NYPD照片分享事件 78
zh_TW
dc.format.extent 2820067 bytes-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G1013560341en_US
dc.subject (關鍵詞) 負面口碑zh_TW
dc.subject (關鍵詞) 線上危機管理zh_TW
dc.subject (關鍵詞) 線上口碑風暴zh_TW
dc.subject (關鍵詞) Negative Word-of-Mouthen_US
dc.subject (關鍵詞) Online Firestormen_US
dc.subject (關鍵詞) Online Crisis Managementen_US
dc.title (題名) 企業對線上口碑風暴回應策略之研究zh_TW
dc.title (題名) Company Strategies in Response to Online Firestormen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 中文:
1.吳宜蓁. (2005). 危機傳播 公共關係與語藝觀點的理論與實證 (二版.). 臺北市: 五南.
2.潘淑滿. (2003). 質性研究: 理論與應用. 臺北市: 心理.
3.陳向明. (2002). 社會科學質的硏究. 臺北市: 五南.
英文:
1.Alavi, M., & Carlson, P. (1992). “A review of MIS research and disciplinary development”, Journal of Management Information Systems, Vol.8,No.4, pp.45–62.
2.Andrews, K. R. (1951). “Executive training by the case method”, Harvard Business Review, Vol.29,No.5, pp.58–70.
3.Arndt, J. (1967). “Word of mouth advertising and informal communication”, Advertising Research Foundation,Vol.29,No.3, pp.188–239.
4.Barton, L. (1993). Crisis in organizations: Managing and communicating in the heat of chaos, College Division: South-Western Publishing Company.
5.Benoit, W. L. (1995). Accounts, excuses, and apologies: A theory of image restoration strategies, New York:State University of New York Press Albany.
6.Benoit, W. L. (1997). “Image repair discourse and crisis communication”, Public Relations Review, Vol.23,No.2, pp.177–186.
7.Berger, J., & Milkman, K. L. (2012). “What Makes Online Content Viral?” Journal of Marketing Research, Vol.49,No.2, pp.192–205.
8.Blodgett, J. G., Granbois, D. H., & Walters, R. G. (1993).”The effects of perceived justice on complainants’ negative word-of-mouth behavior and repatronage intentions”, Journal of Retailing,Vol.69,No.4, pp.399–428.
9.Bogdan, R. C., & Biklen, S. K. (1982). Qualitative research for education. , Boston: Allyn and Bacon.
10.Brown, J., Broderick, A. J., & Lee, N. (2007). “Word of mouth communication within online communities: Conceptualizing the online social network”, Journal of Interactive Marketing, Vol.21, No.3, pp.2–20.
11.Brown, J. J., & Reingen, P. H. (1987). “Social ties and word-of-mouth referral behavior”, Journal of Consumer Research, Vol.14,No3, pp.350–362.
12.Buchanan, M. (2003). Nexus: small worlds and the groundbreaking science of networks. New York: W.W. Norton.
13.Chadwick, B. A., Bahr, H. M., & Albrecht, S. L. (1984). “Social science research methods” http://books.google.com.tw/books?id=j_t9AAAAIAAJ
14.Chu, S.-C., & Kim, Y. (2011). “Determinants of consumer engagement in electronic word-of-mouth (eWOM) in social networking sites”, International Journal of Advertising, Vol.30,No.1, pp.47–75.
15.Coombs, T., & Schmidt, L. (2000). “An Empirical Analysis of Image Restoration: Texaco’s Racism Crisis”, Journal of Public Relations Research, Vol.12,No.2, pp.163–178.
16.Coombs, W. T. (1998). “An analytic framework for crisis situations: Better responses from a better understanding of the situation”, Journal of public relations research, Vol.10,No.3, pp.177-191.
17.Coombs, W. T. (2014). Ongoing Crisis Communication: Planning, Managing, and Responding. New York: SAGE Publications.
18.Coombs, W. T., & Holladay, S. J. (2008). “Comparing apology to equivalent crisis response strategies: Clarifying apology’s role and value in crisis communication”, Public Relations Review, Vol.34, No.3, pp.252–257.
19.Diakopoulos, N., De Choudhury, M., & Naaman, M. (2012).”Finding and Assessing Social Media Information Sources in the Context of Journalism”, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems , pp. 2451–2460.ACM.
20.Dichter, E. (1966). “How word-of-mouth advertising works”, Harvard Business Review, Vol.44,No.6, pp.147–160.
21.Gelb, B. D., & Sundaram, S. (2002). “Adapting to “word of mouse”, Business Horizons, Vol.45,No.4, pp.21–25.
22.Goldsmith, R. E., & Horowitz, D. (2006). “Measuring Motivations for Online Opinion Seeking”, Journal of Interactive Advertising, Vol.6,No.2, pp.2–14.
23.Gonzalez-Herrero, A., & Pratt, C. B. (1995). “How to manage a crisis before-or whenever-it hits”, Public Relations Quarterly, Vol.40, pp.25.
24.Gregory, R. P., Rochelle, C. F., & Rochelle, S. G. (2013). “Positive Feedback Trading: Google Trends and Feeder Cattle Futures”, Journal of Applied Business Research , Vol.29, No.5, pp.1325–1332.
25.Herr, P. M., Kardes, F. R., & Kim, J. (1991). “Effects of word-of-mouth and product-attribute information on persuasion: An accessibility-diagnosticity perspective”, Journal of Consumer Research, Vol.17, No.4, pp.454.
26.Lancy, D. F. (1993). Qualitative research in education: An introduction to the major traditions. London: Longman Pub Group.
27.Loewendick, B. A. (1993). “Laying your crisis on the table”, Training & Development, Vol.47, No.11, pp.15–17.
28.Mangold, W. G., & Faulds, D. J. (2009). “Social media: The new hybrid element of the promotion mix”, Business Horizons, Vol.52,No.4, pp.357–365.
29.McNaughton, M. (n.d.). “Lessons From the #McDStories Promoted Trend Controversy”, http://therealtimereport.com/2012/01/24/lessons-from-the-mcdstories-promoted-trend-controversy/
30.McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). “Birds of a Feather: Homophily in Social Networks”. Annual Review of Sociology, Vol.46,No.1, pp.415–444.
31.Merriam, S. B. (1998). Qualitative Research and Case Study Applications in Education. San Francisco: JosseyBass Publishers.
32.Messner, M., & Distaso, M. W. (2008). “The Source Cycle”, Journalism Studies, Vol.9,No.3, pp.447–463.
33.Murray, K. B. (1991). “A test of services marketing theory: consumer information acquisition activities”, The Journal of Marketing, Vol.55,No.1, pp.10–25.
34.Myers, S. A., Zhu, C., & Leskovec, J. (2012). “Information Diffusion and External Influence in Networks”, Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , pp. 33–41. New York: ACM.
35.Pariser, E. (2011). The Filter Bubble: What The Internet Is Hiding From You. UK: Penguin Books.
36.Pearson, C. M., & Clair, J. A. (1998). “Reframing Crisis Management”, Academy of Management Review, Vol.23, No.1, pp.59–76.
37.Pfeffer, J., Zorbach, T., & Carley, K. M. (2014). “Understanding online firestorms: Negative word-of-mouth dynamics in social media networks”, Journal of Marketing Communications, Vol.20, No.1-2, pp.117–128.
38.Richins, M. L. (1983). “Negative Word-of-Mouth by Dissatisfied Consumers: A Pilot Study”, Journal of Marketing, Vol.47, No.1, pp.68.
39.Richins, M. L. (1984). “Word of Mouth Communication a Negative Information”, Advances in Consumer Research, Vol.11, No.1, pp.697–702.
40.Snyder, C. R., Higgins, R. L., & Stucky, R. J. (1983). Excuses: Masquerades in search of grace. New York: Wiley.
41.Stake, R. E. (1995). The art of case study research. New York: Sage Publications
42.Sullivan, D. (2006). “Nielsen NetRatings search engine ratings.” http://marketingpedia.com/Marketing-Library/Search/industryNewsSeptA1.pdf
43.Tkacz, G. (2013). “Predicting Recessions in Real-Time: Mining Google Trends and Electronic Payments Data for Clues.” CD Howe Institute Commentary, No.387.
44.Trusov, M., Bucklin, R. E., & Pauwels, K. (2009). “Effects of Word-of-Mouth Versus Traditional Marketing: Findings from an Internet Social Networking Site”, Journal of Marketing, Vol.73,No.5, pp90–102.
45.Ware, B. L., & Linkugel, W. A. (1973). “They spoke in defense of themselves: On the generic criticism of apologia”, Quarterly Journal of Speech, Vol.59, No.3, pp273–283.
46.Wu, F., & Huberman, B. A. (2007). “Novelty and collective attention. Proceedings of the National Academy of Sciences”, Vol.104, No.45, pp17599–17601.
47.Yin, R. (2003). Case study research: Design and methods. New York: Sage Publications.
zh_TW