Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 探討雙酚化合物對神經毒素誘發神經毒害及行為異常的預防與治療效用
Investigation of the protective and therapeutic effects of biphenols on neuronal damage and abnormal behavior induced by neurotoxins
作者 劉郁潔
Liu, Yu Chieh
貢獻者 詹銘煥
Chan, Ming Huan
劉郁潔
Liu, Yu Chieh
關鍵詞 雙酚化合物
巴拉圭
過氧化氫
MPTP
認知功能障礙
神經保護作用
biphenol
paraquat
hydrogen peroxide
MPTP
cognitive impairment
neuroprotection
日期 2013
上傳時間 1-Oct-2014 13:41:44 (UTC+8)
摘要 雙酚化合物在文獻報導中發現具有抗發炎和抗氧化的能力,因為其親脂性的特性,雙酚化合物可以輕易穿透血腦屏障到中樞神經系統發揮其藥理活性。因此,雙酚化合物被評估可做為潛在預防及治療神經退化性疾病如帕金森氏症的神經保護藥物。本研究目的為探討新合成的雙酚化合物MH101及MH102是否具有神經保護和治療效用,而對抗神經毒素(包含巴拉圭、過氧化氫及MPTP)引起的神經毒害及其誘發的動物行為異常(如: 學習、記憶及運動協調)。研究中應用Oregon-R的果蠅(年齡: 1-2, 7, 20 和 30天)做為檢測模式,果蠅暴露在巴拉圭 (5-20 mM)或過氧化氫(0.3 %-3 %)環境下,並且給予MH101 (0.1-3 μM)。結果顯示MH101未能有效地減緩巴拉圭及過氧化氫所引起果蠅壽命的下降。此外,給予雄性ICR小鼠 (25-30 g) 腹腔注射MPTP (25mg/kg)每天一次連續五天,觀察神經毒素誘發的行為異常和神經毒害。在觀察保護效果的研究中,雄性小鼠在給予MPTP前一小時腹腔注射MH101 (1-3 mg/kg) 或MH102 (0.1-3 mg/kg) 每天一次連續五天,之後單獨給予MH101或MH102治療連續九天。後處理的組別,雄性小鼠在給予MPTP每天一次連續五天後,每天腹腔注射MH101 (1-3 mg/kg) 或MH102 (0.1-3 mg/kg)連續九天。控制組組別,小鼠則給予生理食鹽水(0.9%)及玉米油的混合液。結果顯示,MH101、MH102及MPTP皆不影響小鼠橫桿行走試驗的運動平衡和協調能力。然而,在前處理和後處理MH101或MH102後用新位置辨識能力測試和新物體辨識能力測試觀察MPTP引起的認知缺失,實驗結果顯示MH101及MH102皆恢復短期記憶和長期記憶的認知辨識指標。另外,前處理和後處理MH101或MH102雖有些微恢復紋狀體內MPTP引起多巴胺神經損傷及多巴胺轉運子減少的趨勢,但不顯著。由此推論,雙酚化合物MH101及MH102具有預防及改善神經毒素所引發的認知與學習缺陷,未來可能發展成為神經退化性疾病如帕金森氏症之潛力治療藥物,另針對MH101及MH102在神經損傷及動物行為障礙的恢復和保護藥理機制則需進一步實驗探討。
Biphenols which are the main constituents of the traditional herbs have been found to possess the antiinflammatory and antioxidative properties. Due to the lipophilic activity, biphenols can readily cross the blood brain barrier to exert their pharmacological effects in the central nervous system. Thus, biphenols are proposed to act as the novel neuroprotective agents for treatment of neurodegenerative disorders such as Parkinson’s disease (PD). The aim of the present study was to examine whether the new synthetic biphenolic compounds MH101 and MH102 have the neuroprotective and therapeutic actions against the neurotoxicity and the behavioral impairments (e.g. learning, memory, and motor coordination) induced by neurotoxins including paraquat, hydrogen peroxide, and MPTP in PD-like animal models. The following experiments examined the lifespan of flies from Oregon-R strain of Drosophoila melanogaster (age: 1-2, 7, 20 and 30 days) chronically exposed to paraquat (5-20 mM) or hydrogen peroxide (0.3 %-3 %) under MH101 (0.1-3 μM) treatment. Our results showed that MH101 could not effectively influence the reduced lifespan of the flies induced by paraquat and hydrogen peroxide. Furthermore, male ICR mice (25-30 g) were administrated with MPTP (25 mg/kg, i.p.) once daily for 5 consecutive days to induce neuronal damage and cognitive deficits. For the protective study, male mice were administrated with MH101 (1-3 mg/kg, i.p.) or MH102 (0.1-3 mg/kg, i.p.) 1 hour prior to MPTP injection once daily for 5 days, and followed daily treatment with MH101 or MH102 alone for consecutive 9 days after the final injection of MPTP. For the post-treatment study, male mice were administrated with MPTP (25 mg/kg, i.p.) once daily for 5 consecutive days, and followed by daily treatment of MH101 or MH102 for 9 days. Mice in control group were injected with vehicle (0.9% saline + corn oil). The results showed that MH101, MH102, and MPTP alone did not alter the motor functions of coordination and balance in beam walking test. On the other hand, both pre-treatment and post-treatment of MH101 and MH102 reversed the cognitive dysfunction induced by MPTP detected by novel location recognition test (NLRT) and novel object recognition test (NORT). Data demonstrated that MH101 and MH102 reversed the reduction in recognition index (RI) of short term memory and long term memory in MPTP-induced PD model. However, pre-treatment and post-treatment of MH101 or MH102 slightly recovered MPTP-induced loss of dopamine neurons and dopamine transporter in striatum. Therefore, the results suggest that biphenols including MH101 and MH102 may be the candidates for treatment of neurodegenerative diseases such as PD. In the future, it will need further study to determine the pharmacological mechanism of MH101 and MH102 in protection and restoration of neuronal injury and cognitive impairment.
參考文獻 (一) 書籍論文
威廉‧蘭斯頓、強‧帕夫瑞曼 原著,譯者:洪蘭,”喚醒冰凍人”,遠流出版社,2005年1月1日出版
李時珍原著,”圖解本草綱目”,紫圖圖書,2007年9月三版一刷
史世勤、賀昌木主編,”李時珍全集”本草綱目第二十一至三十八卷,湖北教育出版社,2004年一版

(二) 期刊文獻
Anandhan A, Janakiraman U, Manivasagam T (2012) Theaflavin ameliorates behavioral deficits, biochemical indices and monoamine transporters expression against subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of Parkinson’s disease. Neuroscience 218:257-267.
Aziz SM, Lipke DW, Olson JW, Gillespie MN (1994) Role of ATP and sodium in polyamine transport in bovine pulmonary artery smooth cells. Biochemical Pharmacology 48:1611-1618.
Barja G (2008) The gene cluster hypothesis of aging and longevity. Biogerontology 9:57-66.
Battle TE, Arbiser J, Frank DA (2005) The natural product honokiol induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia (B-CLL) cells. Blood 106:690-697.
Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson`s disease. Nature neuroscience 3:1301-1306.
Bove J, Perier C (2012) Neurotoxin-based models of Parkinson`s disease. Neuroscience 211:51-76.
Brooks AI, Chadwick CA, Gelbard HA, Cory-Slechta DA, Federoff HJ (1999) Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain research 823:1-10.
Chao LK, Liao PC, Ho CL, Wang EI, Chuang CC, Chiu HW, Hung LB, Hua KF (2010) Anti-inflammatory bioactivities of honokiol through inhibition of protein kinase C, mitogen-activated protein kinase, and the NF-kappaB pathway to reduce LPS-induced TNFalpha and NO expression. Journal of agricultural and food chemistry 58:3472-3478.
Chaudhuri A, Bowling K, Funderburk C, Lawal H, Inamdar A, Wang Z, O`Donnell JM (2007) Interaction of genetic and environmental factors in a Drosophila parkinsonism model. The Journal of neuroscience : the official journal of the Society for Neuroscience 27:2457-2467.
Chen XR, Lu R, Dan HX, Liao G, Zhou M, Li XY, Ji N (2011) Honokiol: a promising small molecular weight natural agent for the growth inhibition of oral squamous cell carcinoma cells. International journal of oral science 3:34-42.
Clejan L, Cederbaum AI (1989) Synergistic interactions between nadph-cytochrome P-450 reductase, paraquat, and iron in the generation of active oxygen radicals. Biochemical Pharmacology 38:1779-1786.
Cocheme HM, Murphy MP (2008) Complex I is the major site of mitochondrial superoxide production by paraquat. The Journal of biological chemistry 283:1786-1798.
Costa G, Simola N, Morelli M (2014) MDMA administration during adolescence exacerbates MPTP-induced cognitive impairment and neuroinflammation in the hippocampus and prefrontal cortex. Psychopharmacology.
Cuervo AM, Wong ES, Martinez-Vicente M (2010) Protein degradation, aggregation, and misfolding. Movement disorders : official journal of the Movement Disorder Society 25 Suppl 1:S49-54.
Curtis C, Landis GN, Folk D, Wehr NB, Hoe N, Waskar M, Abdueva D, Skvortsov D, Ford D, Luu A, Badrinath A, Levine RL, Bradley TJ, Tavare S, Tower J (2007) Transcriptional profiling of MnSOD-mediated lifespan extension in Drosophila reveals a species-general network of aging and metabolic genes. Genome biology 8:R262.
Dauer W, Przedborski S (2003) Parkinson`s disease: mechanisms and models. Neuron 39:889-909.
de la Fuente-Fernandez R, Calne DB (2002) Evidence for environmental causation of Parkinson`s disease. Parkinsonism & related disorders 8:235-241.
Dicker E, Cederbaum AI (1991) NADH-dependent generation of reactive oxygen species by microsomes in the presence of iron and redox cycling agents. Biochemical Pharmacology 42:529-535.
Dinis-Oliveira RJ, Remião F, Carmo H, Duarte JA, Navarro AS, Bastos ML, Carvalho F (2006) Paraquat exposure as an etiological factor of Parkinson`s disease. NeuroToxicology 27:1110-1122.
Fukuyama Y, Nakade K, Minoshima Y, Yokoyama R, Zhai H, Mitsumoto Y (2002) Neurotrophic activity of honokiol on the cultures of fetal rat cortical neurons. Bioorganic & medicinal chemistry letters 12:1163-1166.
Grant HC, Lantos PL, Parkinson C (1980) Cerebral damage in paraquat poisoning. Histopathology 4:185-195.
Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer`s disease: progress and problems on the road to therapeutics. Science (New York, NY) 297:353-356.
Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annual Review of Biochemistry 54:1015-1069.
Hu H, Zhang XX, Wang YY, Chen SZ (2005) Honokiol inhibits arterial thrombosis through endothelial cell protection and stimulation of prostacyclin. Acta pharmacologica Sinica 26:1063-1068.
Ishitsuka K, Hideshima T, Hamasaki M, Raje N, Kumar S, Hideshima H, Shiraishi N, Yasui H, Roccaro AM, Richardson P, Podar K, Le Gouill S, Chauhan D, Tamura K, Arbiser J, Anderson KC (2005) Honokiol overcomes conventional drug resistance in human multiple myeloma by induction of caspase-dependent and -independent apoptosis. Blood 106:1794-1800.
Jimenez-Del-Rio M, Guzman-Martinez C, Velez-Pardo C (2010) The effects of polyphenols on survival and locomotor activity in Drosophila melanogaster exposed to iron and paraquat. Neurochemical research 35:227-238.
Ku TH, Lee YJ, Wang SJ, Fan CH, Tien LT (2011) Effect of honokiol on activity of GAD(65) and GAD(67) in the cortex and hippocampus of mice. Phytomedicine : international journal of phytotherapy and phytopharmacology 18:1126-1129.
Kuter K, Smialowska M, Wieronska J, Zieba B, Wardas J, Pietraszek M, Nowak P, Biedka I, Roczniak W, Konieczny J, Wolfarth S, Ossowska K (2007) Toxic influence of subchronic paraquat administration on dopaminergic neurons in rats. Brain research 1155:196-207.
Landis GN, Abdueva D, Skvortsov D, Yang J, Rabin BE, Carrick J, Tavare S, Tower J (2004) Similar gene expression patterns characterize aging and oxidative stress in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America 101:7663-7668.
Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Annals of neurology 46:598-605.
Lee KS, Lee JK, Kim HG, Kim HR (2013) Differential Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on Motor Behavior and Dopamine Levels at Brain Regions in Three Different Mouse Strains. The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology 17:89-97.
Lee YJ, Lee YM, Lee CK, Jung JK, Han SB, Hong JT (2011) Therapeutic applications of compounds in the Magnolia family. Pharmacology & therapeutics 130:157-176.
Lee YK, Choi IS, Kim YH, Kim KH, Nam SY, Yun YW, Lee MS, Oh KW, Hong JT (2009) Neurite outgrowth effect of 4-O-methylhonokiol by induction of neurotrophic factors through ERK activation. Neurochemical research 34:2251-2260.
Lin Y-R, Chen H-H, Ko C-H, Chan M-H (2006) Neuroprotective activity of honokiol and magnolol in cerebellar granule cell damage. European Journal of Pharmacology 537:64-69.
Liochev SI, Fridovich I (1994) Paraquat diaphorases in Escherichia coli. Free Radical Biology and Medicine 16:555-559.
Liou KT, Shen YC, Chen CF, Tsao CM, Tsai SK (2003) Honokiol protects rat brain from focal cerebral ischemia-reperfusion injury by inhibiting neutrophil infiltration and reactive oxygen species production. Brain research 992:159-166.
Manev H, Dimitrijevic N, Dzitoyeva S (2003) Techniques: fruit flies as models for neuropharmacological research. Trends in pharmacological sciences 24:41-43.
McCormack AL, Thiruchelvam M, Manning-Bog AB, Thiffault C, Langston JW, Cory-Slechta DA, Di Monte DA (2002) Environmental risk factors and Parkinson`s disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiology of disease 10:119-127.
Mizuno Y, Hattori N, Matsumine H (1998) Neurochemical and neurogenetic correlates of Parkinson`s disease. Journal of neurochemistry 71:893-902.
Moriguchi S, Yabuki Y, Fukunaga K (2012) Reduced calcium/calmodulin-dependent protein kinase II activity in the hippocampus is associated with impaired cognitive function in MPTP-treated mice. Journal of neurochemistry 120:541-551.
Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H (2007) Trends in oxidative aging theories. Free radical biology & medicine 43:477-503.
Muroyama A (2013) An alternative medical approach for the neuroprotective therapy to slow the progression of Parkinson`s disease. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan 133:849-856.
Orr WC, Radyuk SN, Prabhudesai L, Toroser D, Benes JJ, Luchak JM, Mockett RJ, Rebrin I, Hubbard JG, Sohal RS (2005) Overexpression of glutamate-cysteine ligase extends life span in Drosophila melanogaster. The Journal of biological chemistry 280:37331-37338.
Prasad K, Tarasewicz E, Mathew J, Strickland PA, Buckley B, Richardson JR, Richfield EK (2009) Toxicokinetics and toxicodynamics of paraquat accumulation in mouse brain. Experimental neurology 215:358-367.
Przedborski S, Jackson-Lewis V, Naini AB, Jakowec M, Petzinger G, Miller R, Akram M (2001) The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety. Journal of neurochemistry 76:1265-1274.
Richardson JR, Quan Y, Sherer TB, Greenamyre JT, Miller GW (2005) Paraquat neurotoxicity is distinct from that of MPTP and rotenone. Toxicological sciences : an official journal of the Society of Toxicology 88:193-201.
Sanz A, Fernandez-Ayala DJ, Stefanatos RK, Jacobs HT (2010) Mitochondrial ROS production correlates with, but does not directly regulate lifespan in Drosophila. Aging 2:200-223.
Schapira AH, Jenner P (2011) Etiology and pathogenesis of Parkinson`s disease. Movement disorders : official journal of the Movement Disorder Society 26:1049-1055.
Schapira AHV, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson`s Disease. Journal of neurochemistry 54:823-827.
Schintu N, Frau L, Ibba M, Garau A, Carboni E, Carta A (2009) Progressive dopaminergic degeneration in the chronic MPTPp mouse model of Parkinson’s disease. Neurotox Res 16:127-139.
Schuehly W, Paredes JM, Kleyer J, Huefner A, Anavi-Goffer S, Raduner S, Altmann KH, Gertsch J (2011) Mechanisms of osteoclastogenesis inhibition by a novel class of biphenyl-type cannabinoid CB(2) receptor inverse agonists. Chemistry & biology 18:1053-1064.
Selvakumar GP, Janakiraman U, Essa MM, Thenmozhi AJ, Manivasagam T (2014) Escin attenuates behavioral impairments, oxidative stress and inflammation in a chronic MPTP/probenecid mouse model of Parkinson׳s disease. Brain research.
Shigemura K, Arbiser JL, Sun SY, Zayzafoon M, Johnstone PA, Fujisawa M, Gotoh A, Weksler B, Zhau HE, Chung LW (2007) Honokiol, a natural plant product, inhibits the bone metastatic growth of human prostate cancer cells. Cancer 109:1279-1289.
Thakar JH, Hassan MN (1988) Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), cyperquat (MPP+) and paraquat on isolated mitochondria from rat striatum, cortex and liver. Life Sciences 43:143-149.
Tomita M (1991) Comparison of one-electron reduction activity against the bipyridylium herbicides, paraquat and diquat, in microsomal and mitochondrial fractions of liver, lung and kidney (in vitro). Biochemical Pharmacology 42:303-309.
Walkinshaw G, Waters CM (1995) Induction of apoptosis in catecholaminergic PC12 cells by L-DOPA. Implications for the treatment of Parkinson`s disease. The Journal of clinical investigation 95:2458-2464.
Wang X, Duan X, Yang G, Zhang X, Deng L, Zheng H, Deng C, Wen J, Wang N, Peng C, Zhao X, Wei Y, Chen L (2011) Honokiol crosses BBB and BCSFB, and inhibits brain tumor growth in rat 9L intracerebral gliosarcoma model and human U251 xenograft glioma model. PloS one 6:e18490.
Xie W, Wan OW, Chung KK (2010) New insights into the role of mitochondrial dysfunction and protein aggregation in Parkinson`s disease. Biochimica et biophysica acta 1802:935-941.
Yang EJ, Lee JY, Park SH, Lee T, Song KS (2013) Neuroprotective effects of neolignans isolated from Magnoliae Cortex against glutamate-induced apoptotic stimuli in HT22 cells. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 56:304-312.
Zhang P, Liu X, Zhu Y, Chen S, Zhou D, Wang Y (2013) Honokiol inhibits the inflammatory reaction during cerebral ischemia reperfusion by suppressing NF-kappaB activation and cytokine production of glial cells. Neuroscience letters 534:123-127.
Zhou C, Huang Y, Przedborski S (2008) Oxidative stress in Parkinson`s disease: a mechanism of pathogenic and therapeutic significance. Annals of the New York Academy of Sciences 1147:93-104.
描述 碩士
國立政治大學
神經科學研究所
100754008
102
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0100754008
資料類型 thesis
dc.contributor.advisor 詹銘煥zh_TW
dc.contributor.advisor Chan, Ming Huanen_US
dc.contributor.author (Authors) 劉郁潔zh_TW
dc.contributor.author (Authors) Liu, Yu Chiehen_US
dc.creator (作者) 劉郁潔zh_TW
dc.creator (作者) Liu, Yu Chiehen_US
dc.date (日期) 2013en_US
dc.date.accessioned 1-Oct-2014 13:41:44 (UTC+8)-
dc.date.available 1-Oct-2014 13:41:44 (UTC+8)-
dc.date.issued (上傳時間) 1-Oct-2014 13:41:44 (UTC+8)-
dc.identifier (Other Identifiers) G0100754008en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/70314-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 神經科學研究所zh_TW
dc.description (描述) 100754008zh_TW
dc.description (描述) 102zh_TW
dc.description.abstract (摘要) 雙酚化合物在文獻報導中發現具有抗發炎和抗氧化的能力,因為其親脂性的特性,雙酚化合物可以輕易穿透血腦屏障到中樞神經系統發揮其藥理活性。因此,雙酚化合物被評估可做為潛在預防及治療神經退化性疾病如帕金森氏症的神經保護藥物。本研究目的為探討新合成的雙酚化合物MH101及MH102是否具有神經保護和治療效用,而對抗神經毒素(包含巴拉圭、過氧化氫及MPTP)引起的神經毒害及其誘發的動物行為異常(如: 學習、記憶及運動協調)。研究中應用Oregon-R的果蠅(年齡: 1-2, 7, 20 和 30天)做為檢測模式,果蠅暴露在巴拉圭 (5-20 mM)或過氧化氫(0.3 %-3 %)環境下,並且給予MH101 (0.1-3 μM)。結果顯示MH101未能有效地減緩巴拉圭及過氧化氫所引起果蠅壽命的下降。此外,給予雄性ICR小鼠 (25-30 g) 腹腔注射MPTP (25mg/kg)每天一次連續五天,觀察神經毒素誘發的行為異常和神經毒害。在觀察保護效果的研究中,雄性小鼠在給予MPTP前一小時腹腔注射MH101 (1-3 mg/kg) 或MH102 (0.1-3 mg/kg) 每天一次連續五天,之後單獨給予MH101或MH102治療連續九天。後處理的組別,雄性小鼠在給予MPTP每天一次連續五天後,每天腹腔注射MH101 (1-3 mg/kg) 或MH102 (0.1-3 mg/kg)連續九天。控制組組別,小鼠則給予生理食鹽水(0.9%)及玉米油的混合液。結果顯示,MH101、MH102及MPTP皆不影響小鼠橫桿行走試驗的運動平衡和協調能力。然而,在前處理和後處理MH101或MH102後用新位置辨識能力測試和新物體辨識能力測試觀察MPTP引起的認知缺失,實驗結果顯示MH101及MH102皆恢復短期記憶和長期記憶的認知辨識指標。另外,前處理和後處理MH101或MH102雖有些微恢復紋狀體內MPTP引起多巴胺神經損傷及多巴胺轉運子減少的趨勢,但不顯著。由此推論,雙酚化合物MH101及MH102具有預防及改善神經毒素所引發的認知與學習缺陷,未來可能發展成為神經退化性疾病如帕金森氏症之潛力治療藥物,另針對MH101及MH102在神經損傷及動物行為障礙的恢復和保護藥理機制則需進一步實驗探討。zh_TW
dc.description.abstract (摘要) Biphenols which are the main constituents of the traditional herbs have been found to possess the antiinflammatory and antioxidative properties. Due to the lipophilic activity, biphenols can readily cross the blood brain barrier to exert their pharmacological effects in the central nervous system. Thus, biphenols are proposed to act as the novel neuroprotective agents for treatment of neurodegenerative disorders such as Parkinson’s disease (PD). The aim of the present study was to examine whether the new synthetic biphenolic compounds MH101 and MH102 have the neuroprotective and therapeutic actions against the neurotoxicity and the behavioral impairments (e.g. learning, memory, and motor coordination) induced by neurotoxins including paraquat, hydrogen peroxide, and MPTP in PD-like animal models. The following experiments examined the lifespan of flies from Oregon-R strain of Drosophoila melanogaster (age: 1-2, 7, 20 and 30 days) chronically exposed to paraquat (5-20 mM) or hydrogen peroxide (0.3 %-3 %) under MH101 (0.1-3 μM) treatment. Our results showed that MH101 could not effectively influence the reduced lifespan of the flies induced by paraquat and hydrogen peroxide. Furthermore, male ICR mice (25-30 g) were administrated with MPTP (25 mg/kg, i.p.) once daily for 5 consecutive days to induce neuronal damage and cognitive deficits. For the protective study, male mice were administrated with MH101 (1-3 mg/kg, i.p.) or MH102 (0.1-3 mg/kg, i.p.) 1 hour prior to MPTP injection once daily for 5 days, and followed daily treatment with MH101 or MH102 alone for consecutive 9 days after the final injection of MPTP. For the post-treatment study, male mice were administrated with MPTP (25 mg/kg, i.p.) once daily for 5 consecutive days, and followed by daily treatment of MH101 or MH102 for 9 days. Mice in control group were injected with vehicle (0.9% saline + corn oil). The results showed that MH101, MH102, and MPTP alone did not alter the motor functions of coordination and balance in beam walking test. On the other hand, both pre-treatment and post-treatment of MH101 and MH102 reversed the cognitive dysfunction induced by MPTP detected by novel location recognition test (NLRT) and novel object recognition test (NORT). Data demonstrated that MH101 and MH102 reversed the reduction in recognition index (RI) of short term memory and long term memory in MPTP-induced PD model. However, pre-treatment and post-treatment of MH101 or MH102 slightly recovered MPTP-induced loss of dopamine neurons and dopamine transporter in striatum. Therefore, the results suggest that biphenols including MH101 and MH102 may be the candidates for treatment of neurodegenerative diseases such as PD. In the future, it will need further study to determine the pharmacological mechanism of MH101 and MH102 in protection and restoration of neuronal injury and cognitive impairment.en_US
dc.description.tableofcontents 中文摘要 I
Abstract II
目錄 IV
圖次 VI
縮寫對照表 (abbreviation) VIII
第一章 緒論 1
第一節 前言 1
第二節 厚朴之簡介 2
第三節 和厚朴酚之簡介 3
第四節 帕金森氏症簡介 6
第五節 帕金森氏症的致病機轉與治療 8
第六節 引發類帕金森氏症的動物模式 9
第七節 研究動機及目的 12
第二章 實驗材料與方法 13
第一節 實驗動物 13
第二節 實驗藥品配置 13
第三節 實驗方法 14
第四節 實驗流程設計 18
第五節 實驗數據分析 21
第三章 實驗結果 21
第一節 雙酚化合物MH101對巴拉圭引起果蠅生存及死亡之影響 21
第二節 雙酚化合物MH101與過氧化氫對果蠅生存及死亡之影響 27
第三節 評估雙酚化合物對MPTP引起的小鼠行為異常之療效 37
第四節 探討雙酚化合物對MPTP引起的小鼠神經毒害之相關機制 44
第四章 討論 51
第五章 結論 55
第六章 參考文獻 56
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0100754008en_US
dc.subject (關鍵詞) 雙酚化合物zh_TW
dc.subject (關鍵詞) 巴拉圭zh_TW
dc.subject (關鍵詞) 過氧化氫zh_TW
dc.subject (關鍵詞) MPTPzh_TW
dc.subject (關鍵詞) 認知功能障礙zh_TW
dc.subject (關鍵詞) 神經保護作用zh_TW
dc.subject (關鍵詞) biphenolen_US
dc.subject (關鍵詞) paraquaten_US
dc.subject (關鍵詞) hydrogen peroxideen_US
dc.subject (關鍵詞) MPTPen_US
dc.subject (關鍵詞) cognitive impairmenten_US
dc.subject (關鍵詞) neuroprotectionen_US
dc.title (題名) 探討雙酚化合物對神經毒素誘發神經毒害及行為異常的預防與治療效用zh_TW
dc.title (題名) Investigation of the protective and therapeutic effects of biphenols on neuronal damage and abnormal behavior induced by neurotoxinsen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) (一) 書籍論文
威廉‧蘭斯頓、強‧帕夫瑞曼 原著,譯者:洪蘭,”喚醒冰凍人”,遠流出版社,2005年1月1日出版
李時珍原著,”圖解本草綱目”,紫圖圖書,2007年9月三版一刷
史世勤、賀昌木主編,”李時珍全集”本草綱目第二十一至三十八卷,湖北教育出版社,2004年一版

(二) 期刊文獻
Anandhan A, Janakiraman U, Manivasagam T (2012) Theaflavin ameliorates behavioral deficits, biochemical indices and monoamine transporters expression against subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of Parkinson’s disease. Neuroscience 218:257-267.
Aziz SM, Lipke DW, Olson JW, Gillespie MN (1994) Role of ATP and sodium in polyamine transport in bovine pulmonary artery smooth cells. Biochemical Pharmacology 48:1611-1618.
Barja G (2008) The gene cluster hypothesis of aging and longevity. Biogerontology 9:57-66.
Battle TE, Arbiser J, Frank DA (2005) The natural product honokiol induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia (B-CLL) cells. Blood 106:690-697.
Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson`s disease. Nature neuroscience 3:1301-1306.
Bove J, Perier C (2012) Neurotoxin-based models of Parkinson`s disease. Neuroscience 211:51-76.
Brooks AI, Chadwick CA, Gelbard HA, Cory-Slechta DA, Federoff HJ (1999) Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain research 823:1-10.
Chao LK, Liao PC, Ho CL, Wang EI, Chuang CC, Chiu HW, Hung LB, Hua KF (2010) Anti-inflammatory bioactivities of honokiol through inhibition of protein kinase C, mitogen-activated protein kinase, and the NF-kappaB pathway to reduce LPS-induced TNFalpha and NO expression. Journal of agricultural and food chemistry 58:3472-3478.
Chaudhuri A, Bowling K, Funderburk C, Lawal H, Inamdar A, Wang Z, O`Donnell JM (2007) Interaction of genetic and environmental factors in a Drosophila parkinsonism model. The Journal of neuroscience : the official journal of the Society for Neuroscience 27:2457-2467.
Chen XR, Lu R, Dan HX, Liao G, Zhou M, Li XY, Ji N (2011) Honokiol: a promising small molecular weight natural agent for the growth inhibition of oral squamous cell carcinoma cells. International journal of oral science 3:34-42.
Clejan L, Cederbaum AI (1989) Synergistic interactions between nadph-cytochrome P-450 reductase, paraquat, and iron in the generation of active oxygen radicals. Biochemical Pharmacology 38:1779-1786.
Cocheme HM, Murphy MP (2008) Complex I is the major site of mitochondrial superoxide production by paraquat. The Journal of biological chemistry 283:1786-1798.
Costa G, Simola N, Morelli M (2014) MDMA administration during adolescence exacerbates MPTP-induced cognitive impairment and neuroinflammation in the hippocampus and prefrontal cortex. Psychopharmacology.
Cuervo AM, Wong ES, Martinez-Vicente M (2010) Protein degradation, aggregation, and misfolding. Movement disorders : official journal of the Movement Disorder Society 25 Suppl 1:S49-54.
Curtis C, Landis GN, Folk D, Wehr NB, Hoe N, Waskar M, Abdueva D, Skvortsov D, Ford D, Luu A, Badrinath A, Levine RL, Bradley TJ, Tavare S, Tower J (2007) Transcriptional profiling of MnSOD-mediated lifespan extension in Drosophila reveals a species-general network of aging and metabolic genes. Genome biology 8:R262.
Dauer W, Przedborski S (2003) Parkinson`s disease: mechanisms and models. Neuron 39:889-909.
de la Fuente-Fernandez R, Calne DB (2002) Evidence for environmental causation of Parkinson`s disease. Parkinsonism & related disorders 8:235-241.
Dicker E, Cederbaum AI (1991) NADH-dependent generation of reactive oxygen species by microsomes in the presence of iron and redox cycling agents. Biochemical Pharmacology 42:529-535.
Dinis-Oliveira RJ, Remião F, Carmo H, Duarte JA, Navarro AS, Bastos ML, Carvalho F (2006) Paraquat exposure as an etiological factor of Parkinson`s disease. NeuroToxicology 27:1110-1122.
Fukuyama Y, Nakade K, Minoshima Y, Yokoyama R, Zhai H, Mitsumoto Y (2002) Neurotrophic activity of honokiol on the cultures of fetal rat cortical neurons. Bioorganic & medicinal chemistry letters 12:1163-1166.
Grant HC, Lantos PL, Parkinson C (1980) Cerebral damage in paraquat poisoning. Histopathology 4:185-195.
Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer`s disease: progress and problems on the road to therapeutics. Science (New York, NY) 297:353-356.
Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annual Review of Biochemistry 54:1015-1069.
Hu H, Zhang XX, Wang YY, Chen SZ (2005) Honokiol inhibits arterial thrombosis through endothelial cell protection and stimulation of prostacyclin. Acta pharmacologica Sinica 26:1063-1068.
Ishitsuka K, Hideshima T, Hamasaki M, Raje N, Kumar S, Hideshima H, Shiraishi N, Yasui H, Roccaro AM, Richardson P, Podar K, Le Gouill S, Chauhan D, Tamura K, Arbiser J, Anderson KC (2005) Honokiol overcomes conventional drug resistance in human multiple myeloma by induction of caspase-dependent and -independent apoptosis. Blood 106:1794-1800.
Jimenez-Del-Rio M, Guzman-Martinez C, Velez-Pardo C (2010) The effects of polyphenols on survival and locomotor activity in Drosophila melanogaster exposed to iron and paraquat. Neurochemical research 35:227-238.
Ku TH, Lee YJ, Wang SJ, Fan CH, Tien LT (2011) Effect of honokiol on activity of GAD(65) and GAD(67) in the cortex and hippocampus of mice. Phytomedicine : international journal of phytotherapy and phytopharmacology 18:1126-1129.
Kuter K, Smialowska M, Wieronska J, Zieba B, Wardas J, Pietraszek M, Nowak P, Biedka I, Roczniak W, Konieczny J, Wolfarth S, Ossowska K (2007) Toxic influence of subchronic paraquat administration on dopaminergic neurons in rats. Brain research 1155:196-207.
Landis GN, Abdueva D, Skvortsov D, Yang J, Rabin BE, Carrick J, Tavare S, Tower J (2004) Similar gene expression patterns characterize aging and oxidative stress in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America 101:7663-7668.
Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Annals of neurology 46:598-605.
Lee KS, Lee JK, Kim HG, Kim HR (2013) Differential Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on Motor Behavior and Dopamine Levels at Brain Regions in Three Different Mouse Strains. The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology 17:89-97.
Lee YJ, Lee YM, Lee CK, Jung JK, Han SB, Hong JT (2011) Therapeutic applications of compounds in the Magnolia family. Pharmacology & therapeutics 130:157-176.
Lee YK, Choi IS, Kim YH, Kim KH, Nam SY, Yun YW, Lee MS, Oh KW, Hong JT (2009) Neurite outgrowth effect of 4-O-methylhonokiol by induction of neurotrophic factors through ERK activation. Neurochemical research 34:2251-2260.
Lin Y-R, Chen H-H, Ko C-H, Chan M-H (2006) Neuroprotective activity of honokiol and magnolol in cerebellar granule cell damage. European Journal of Pharmacology 537:64-69.
Liochev SI, Fridovich I (1994) Paraquat diaphorases in Escherichia coli. Free Radical Biology and Medicine 16:555-559.
Liou KT, Shen YC, Chen CF, Tsao CM, Tsai SK (2003) Honokiol protects rat brain from focal cerebral ischemia-reperfusion injury by inhibiting neutrophil infiltration and reactive oxygen species production. Brain research 992:159-166.
Manev H, Dimitrijevic N, Dzitoyeva S (2003) Techniques: fruit flies as models for neuropharmacological research. Trends in pharmacological sciences 24:41-43.
McCormack AL, Thiruchelvam M, Manning-Bog AB, Thiffault C, Langston JW, Cory-Slechta DA, Di Monte DA (2002) Environmental risk factors and Parkinson`s disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiology of disease 10:119-127.
Mizuno Y, Hattori N, Matsumine H (1998) Neurochemical and neurogenetic correlates of Parkinson`s disease. Journal of neurochemistry 71:893-902.
Moriguchi S, Yabuki Y, Fukunaga K (2012) Reduced calcium/calmodulin-dependent protein kinase II activity in the hippocampus is associated with impaired cognitive function in MPTP-treated mice. Journal of neurochemistry 120:541-551.
Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H (2007) Trends in oxidative aging theories. Free radical biology & medicine 43:477-503.
Muroyama A (2013) An alternative medical approach for the neuroprotective therapy to slow the progression of Parkinson`s disease. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan 133:849-856.
Orr WC, Radyuk SN, Prabhudesai L, Toroser D, Benes JJ, Luchak JM, Mockett RJ, Rebrin I, Hubbard JG, Sohal RS (2005) Overexpression of glutamate-cysteine ligase extends life span in Drosophila melanogaster. The Journal of biological chemistry 280:37331-37338.
Prasad K, Tarasewicz E, Mathew J, Strickland PA, Buckley B, Richardson JR, Richfield EK (2009) Toxicokinetics and toxicodynamics of paraquat accumulation in mouse brain. Experimental neurology 215:358-367.
Przedborski S, Jackson-Lewis V, Naini AB, Jakowec M, Petzinger G, Miller R, Akram M (2001) The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety. Journal of neurochemistry 76:1265-1274.
Richardson JR, Quan Y, Sherer TB, Greenamyre JT, Miller GW (2005) Paraquat neurotoxicity is distinct from that of MPTP and rotenone. Toxicological sciences : an official journal of the Society of Toxicology 88:193-201.
Sanz A, Fernandez-Ayala DJ, Stefanatos RK, Jacobs HT (2010) Mitochondrial ROS production correlates with, but does not directly regulate lifespan in Drosophila. Aging 2:200-223.
Schapira AH, Jenner P (2011) Etiology and pathogenesis of Parkinson`s disease. Movement disorders : official journal of the Movement Disorder Society 26:1049-1055.
Schapira AHV, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson`s Disease. Journal of neurochemistry 54:823-827.
Schintu N, Frau L, Ibba M, Garau A, Carboni E, Carta A (2009) Progressive dopaminergic degeneration in the chronic MPTPp mouse model of Parkinson’s disease. Neurotox Res 16:127-139.
Schuehly W, Paredes JM, Kleyer J, Huefner A, Anavi-Goffer S, Raduner S, Altmann KH, Gertsch J (2011) Mechanisms of osteoclastogenesis inhibition by a novel class of biphenyl-type cannabinoid CB(2) receptor inverse agonists. Chemistry & biology 18:1053-1064.
Selvakumar GP, Janakiraman U, Essa MM, Thenmozhi AJ, Manivasagam T (2014) Escin attenuates behavioral impairments, oxidative stress and inflammation in a chronic MPTP/probenecid mouse model of Parkinson׳s disease. Brain research.
Shigemura K, Arbiser JL, Sun SY, Zayzafoon M, Johnstone PA, Fujisawa M, Gotoh A, Weksler B, Zhau HE, Chung LW (2007) Honokiol, a natural plant product, inhibits the bone metastatic growth of human prostate cancer cells. Cancer 109:1279-1289.
Thakar JH, Hassan MN (1988) Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), cyperquat (MPP+) and paraquat on isolated mitochondria from rat striatum, cortex and liver. Life Sciences 43:143-149.
Tomita M (1991) Comparison of one-electron reduction activity against the bipyridylium herbicides, paraquat and diquat, in microsomal and mitochondrial fractions of liver, lung and kidney (in vitro). Biochemical Pharmacology 42:303-309.
Walkinshaw G, Waters CM (1995) Induction of apoptosis in catecholaminergic PC12 cells by L-DOPA. Implications for the treatment of Parkinson`s disease. The Journal of clinical investigation 95:2458-2464.
Wang X, Duan X, Yang G, Zhang X, Deng L, Zheng H, Deng C, Wen J, Wang N, Peng C, Zhao X, Wei Y, Chen L (2011) Honokiol crosses BBB and BCSFB, and inhibits brain tumor growth in rat 9L intracerebral gliosarcoma model and human U251 xenograft glioma model. PloS one 6:e18490.
Xie W, Wan OW, Chung KK (2010) New insights into the role of mitochondrial dysfunction and protein aggregation in Parkinson`s disease. Biochimica et biophysica acta 1802:935-941.
Yang EJ, Lee JY, Park SH, Lee T, Song KS (2013) Neuroprotective effects of neolignans isolated from Magnoliae Cortex against glutamate-induced apoptotic stimuli in HT22 cells. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 56:304-312.
Zhang P, Liu X, Zhu Y, Chen S, Zhou D, Wang Y (2013) Honokiol inhibits the inflammatory reaction during cerebral ischemia reperfusion by suppressing NF-kappaB activation and cytokine production of glial cells. Neuroscience letters 534:123-127.
Zhou C, Huang Y, Przedborski S (2008) Oxidative stress in Parkinson`s disease: a mechanism of pathogenic and therapeutic significance. Annals of the New York Academy of Sciences 1147:93-104.
zh_TW