Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 基於 RGBD 影音串流之肢體表情語言表現評估
Estimation and Evaluation of Body Language Using RGBD Data
作者 吳怡潔
Wu, Yi Chieh
貢獻者 廖文宏
Liao, Wen Hung
吳怡潔
Wu, Yi Chieh
關鍵詞 肢體語言
RGBD Kinect 感測器
表現評估
聲音處理
模式分類
Body language
RGBD Kinect sensor
performance evaluation
audio processing
pattern classification
日期 2013
上傳時間 3-Nov-2014 10:11:57 (UTC+8)
摘要 本論文基於具備捕捉影像深度的RGBD影音串流裝置-Kinect感測器,在簡報場域中,作為擷取簡報者肢體動作、表情、以及語言表現模式的設備。首先我們提出在特定時段內的表現模式,可以經由大眾的評估,而具有喜歡/不喜歡的性質,我們將其分別命名為Period of Like(POL)以及Period of Dislike(POD)。論文中並以三種Kinect SDK所提供的影像特徵:動畫單元、骨架關節點、以及3D臉部頂點,輔以35位評估者所提供之評估資料,以POD/POL取出的特徵模式,分析是否具有一致性,以及是否可用於未來預測。最後將研究結果開發應用於原型程式,期許這樣的預測系統,能夠為在簡報中表現不佳而困擾的人們,提點其優劣之處,以作為後續改善之依據。
In this thesis, we capture body movements, facial expressions, and voice data of subjects in the presentation scenario using RGBD-capable Kinect sensor. The acquired videos were accessed by a group of reviewers to indicate their preferences/aversions to the presentation style. We denote the two classes of ruling as Period of Like (POL) and Period of Dislike (POD), respectively. We then employ three types of image features, namely, animation units (AU), skeletal joints, and 3D face vertices to analyze the consistency of the evaluation result, as well as the ability to classify unseen footage based on the training data supplied by 35 evaluators. Finally, we develop a prototype program to help users to identify their strength/weakness during their presentation so that they can improve their skills accordingly.
參考文獻 [1] Rachael E. Jack, “Facial expressions of emotion are not culturally universal”, PNAS online, 2012.
[2] Alex Pentland, ” Honest Signals : How They Shape Our World”, The MIT Press, August.2008.
[3] Oxford Dictionaries,
http://www.oxforddictionaries.com/definition/english/body-language.
[4] Wikipedia contributors, "Kinect," Wikipedia, The Free Encyclopedia,
http://en.wikipedia.org/w/index.php?title=Kinect&oldid=612754262 (accessed June 29, 2014).
[5] MSDN, ”Face Tracking",
http://msdn.microsoft.com/en-us/library/jj130970.aspx.
[6] MSDN, ”Tracking Users with Kinect Skeletal Tracking",
http://msdn.microsoft.com/en-us/library/jj131025.aspx.
[7] Microsoft, “Pre-order the Kinect for Windows v2 sensor”,
http://www.microsoft.com/en-us/kinectforwindows/Purchase/developer-sku.aspx
[8] M. E. Hoque, M. Courgeon, B. Mutlu, J-C. Martin, R. W. Picard, “MACH: My Automated Conversation coacH “, In the 15th International Conference on Ubiquitous Computing (Ubicomp), September 2013.
[9] S. Feese, B. Arnrich, G. Tröster, B. Meyer, K. Jonas, “Automatic Clustering of Conversational Patterns from Speech and Motion Data”, Measuring Behavior 2012.
[10] Nick Morgan, “7 Surprising Truths about Body Language”,
http://www.forbes.com/sites/nickmorgan/2012/10/25/7-surprising-truths-about-body-language/.
[11] Alex Pentland, ” Honest Signals : How They Shape Our World”, The MIT Press, p.3-4, August.2008.
[12] Marco Pasch, Monica Landoni, “Building Corpora of Bodily Expressions of Affect”, Measuring Behavior 2012.
[13] Xsens MVN suit, http://www.xsens.com/products/xsens-mvn/.
[14] Wouter van Teijlingen, Egon L. van den Broek, Reinier Könemann, John G.M. Schavemaker, “Towards Sensing Behavior Using the Kinect”, Measuring Behavior 2012.
[15] MSDN, “Using the Kinect as an Audio Device”,
http://msdn.microsoft.com/en-us/library/jj883682.aspx.
[16] Posner MI, “Timing the Brain: Mental Chronometry as a Tool in Neuroscience”, PLoS Biol 3(2): e51. doi:10.1371/journal.pbio.0030051, 2005,
http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.0030051.
[17] Ken Goldberg, Siamak Faridani, Ron Alterovitz, “A New Derivation and Dataset for Fitts` Law of Human Motion”, Technical Report No. UCB/EECS-2013-171 , October 22, 2013, http://www.tele-actor.net/fitts-dataset/.
[18] FFmpeg, https://www.ffmpeg.org/.
[19] w3schools, “HTML
描述 碩士
國立政治大學
資訊科學學系
101971004
102
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0101971004
資料類型 thesis
dc.contributor.advisor 廖文宏zh_TW
dc.contributor.advisor Liao, Wen Hungen_US
dc.contributor.author (Authors) 吳怡潔zh_TW
dc.contributor.author (Authors) Wu, Yi Chiehen_US
dc.creator (作者) 吳怡潔zh_TW
dc.creator (作者) Wu, Yi Chiehen_US
dc.date (日期) 2013en_US
dc.date.accessioned 3-Nov-2014 10:11:57 (UTC+8)-
dc.date.available 3-Nov-2014 10:11:57 (UTC+8)-
dc.date.issued (上傳時間) 3-Nov-2014 10:11:57 (UTC+8)-
dc.identifier (Other Identifiers) G0101971004en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/70998-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學學系zh_TW
dc.description (描述) 101971004zh_TW
dc.description (描述) 102zh_TW
dc.description.abstract (摘要) 本論文基於具備捕捉影像深度的RGBD影音串流裝置-Kinect感測器,在簡報場域中,作為擷取簡報者肢體動作、表情、以及語言表現模式的設備。首先我們提出在特定時段內的表現模式,可以經由大眾的評估,而具有喜歡/不喜歡的性質,我們將其分別命名為Period of Like(POL)以及Period of Dislike(POD)。論文中並以三種Kinect SDK所提供的影像特徵:動畫單元、骨架關節點、以及3D臉部頂點,輔以35位評估者所提供之評估資料,以POD/POL取出的特徵模式,分析是否具有一致性,以及是否可用於未來預測。最後將研究結果開發應用於原型程式,期許這樣的預測系統,能夠為在簡報中表現不佳而困擾的人們,提點其優劣之處,以作為後續改善之依據。zh_TW
dc.description.abstract (摘要) In this thesis, we capture body movements, facial expressions, and voice data of subjects in the presentation scenario using RGBD-capable Kinect sensor. The acquired videos were accessed by a group of reviewers to indicate their preferences/aversions to the presentation style. We denote the two classes of ruling as Period of Like (POL) and Period of Dislike (POD), respectively. We then employ three types of image features, namely, animation units (AU), skeletal joints, and 3D face vertices to analyze the consistency of the evaluation result, as well as the ability to classify unseen footage based on the training data supplied by 35 evaluators. Finally, we develop a prototype program to help users to identify their strength/weakness during their presentation so that they can improve their skills accordingly.en_US
dc.description.tableofcontents 第一章 緒論 1
1.1 研究動機 1
1.2 論文架構 4
第二章 相關研究 5
2.1 文獻探討 5
2.2 工具探討 7
第三章 研究方法 11
3.1 基本構想 11
3.2 前期研究 14
3.2.1 錄製影音檔,並儲存相關特徵 14
3.2.2 影片格式轉換 16
3.2.3 取出影片中的聲音,分析其特徵,及偵測特定聲音事件 16
3.2.4 使用網頁技術呈現影片,並試作使用者介面及需求功能 21
3.3 研究架構設計 22
3.3.1 問題陳述 22
3.3.2 研究架構 22
3.3.3 研究分析工具 23
3.3 目標設定 24
第四章 研究過程與結果分析 25
4.1 研究過程 25
4.1.1 小量測試評估階段 25
4.1.2 實驗者自行測試評估階段 27
4.1.3 大量正式評估階段 28
4.2 分析項目 29
4.2.1 動畫單元特徵模式 29
4.2.2 骨架關節點位置差值(Skeletal Joints Position Difference)特徵模式 31
4.2.3 3D臉部頂點位置差值(3D Vertex Position Difference)特徵模式 32
4.2.4 聲音事件命中率 33
4.3 可用性分析 34
4.3.1 檢驗動畫單元特徵模式的共識程度 35
4.3.2 檢驗骨架關節點位置差值特徵模式的共識程度 38
4.3.3 檢驗3D臉部位置差值特徵模式的共識程度 40
4.3.4 檢驗聲音事件的共識程度 41
4.3.5 喜歡/不喜歡的表現模式,機器能否學習並預測? 43
第五章 研究結果之應用 55
5.1 基於研究結果之應用 55
5.2 應用實例 56
第六章 結論與未來研究方向 59
5.1 結論 59
5.2 未來研究方向 59
參考文獻 61
附錄 65
zh_TW
dc.format.extent 9841690 bytes-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0101971004en_US
dc.subject (關鍵詞) 肢體語言zh_TW
dc.subject (關鍵詞) RGBD Kinect 感測器zh_TW
dc.subject (關鍵詞) 表現評估zh_TW
dc.subject (關鍵詞) 聲音處理zh_TW
dc.subject (關鍵詞) 模式分類zh_TW
dc.subject (關鍵詞) Body languageen_US
dc.subject (關鍵詞) RGBD Kinect sensoren_US
dc.subject (關鍵詞) performance evaluationen_US
dc.subject (關鍵詞) audio processingen_US
dc.subject (關鍵詞) pattern classificationen_US
dc.title (題名) 基於 RGBD 影音串流之肢體表情語言表現評估zh_TW
dc.title (題名) Estimation and Evaluation of Body Language Using RGBD Dataen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] Rachael E. Jack, “Facial expressions of emotion are not culturally universal”, PNAS online, 2012.
[2] Alex Pentland, ” Honest Signals : How They Shape Our World”, The MIT Press, August.2008.
[3] Oxford Dictionaries,
http://www.oxforddictionaries.com/definition/english/body-language.
[4] Wikipedia contributors, "Kinect," Wikipedia, The Free Encyclopedia,
http://en.wikipedia.org/w/index.php?title=Kinect&oldid=612754262 (accessed June 29, 2014).
[5] MSDN, ”Face Tracking",
http://msdn.microsoft.com/en-us/library/jj130970.aspx.
[6] MSDN, ”Tracking Users with Kinect Skeletal Tracking",
http://msdn.microsoft.com/en-us/library/jj131025.aspx.
[7] Microsoft, “Pre-order the Kinect for Windows v2 sensor”,
http://www.microsoft.com/en-us/kinectforwindows/Purchase/developer-sku.aspx
[8] M. E. Hoque, M. Courgeon, B. Mutlu, J-C. Martin, R. W. Picard, “MACH: My Automated Conversation coacH “, In the 15th International Conference on Ubiquitous Computing (Ubicomp), September 2013.
[9] S. Feese, B. Arnrich, G. Tröster, B. Meyer, K. Jonas, “Automatic Clustering of Conversational Patterns from Speech and Motion Data”, Measuring Behavior 2012.
[10] Nick Morgan, “7 Surprising Truths about Body Language”,
http://www.forbes.com/sites/nickmorgan/2012/10/25/7-surprising-truths-about-body-language/.
[11] Alex Pentland, ” Honest Signals : How They Shape Our World”, The MIT Press, p.3-4, August.2008.
[12] Marco Pasch, Monica Landoni, “Building Corpora of Bodily Expressions of Affect”, Measuring Behavior 2012.
[13] Xsens MVN suit, http://www.xsens.com/products/xsens-mvn/.
[14] Wouter van Teijlingen, Egon L. van den Broek, Reinier Könemann, John G.M. Schavemaker, “Towards Sensing Behavior Using the Kinect”, Measuring Behavior 2012.
[15] MSDN, “Using the Kinect as an Audio Device”,
http://msdn.microsoft.com/en-us/library/jj883682.aspx.
[16] Posner MI, “Timing the Brain: Mental Chronometry as a Tool in Neuroscience”, PLoS Biol 3(2): e51. doi:10.1371/journal.pbio.0030051, 2005,
http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.0030051.
[17] Ken Goldberg, Siamak Faridani, Ron Alterovitz, “A New Derivation and Dataset for Fitts` Law of Human Motion”, Technical Report No. UCB/EECS-2013-171 , October 22, 2013, http://www.tele-actor.net/fitts-dataset/.
[18] FFmpeg, https://www.ffmpeg.org/.
[19] w3schools, “HTML
zh_TW