dc.contributor | 應數系 | en_US |
dc.creator (作者) | 陳隆奇 | zh_TW |
dc.creator (作者) | Chen, Lung-Chi | en_US |
dc.creator (作者) | Akira Sakai | en_US |
dc.date (日期) | 2009.10 | en_US |
dc.date.accessioned | 13-Nov-2014 17:22:54 (UTC+8) | - |
dc.date.available | 13-Nov-2014 17:22:54 (UTC+8) | - |
dc.date.issued (上傳時間) | 13-Nov-2014 17:22:54 (UTC+8) | - |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/71418 | - |
dc.description.abstract (摘要) | We prove that the Fourier transform of the properly scaled normalized two-point function for sufficiently spread-out long-range oriented percolation with index α > 0 converges to e−C|k|α∧2 for some C∈(0,∞) above the upper-critical dimension dc≡2(α∧2) . This answers the open question remained in the previous paper (Chen and Sakai in Probab Theory Relat Fields 142:151–188, 2008). Moreover, we show that the constant C exhibits crossover at α = 2, which is a result of interactions among occupied paths. The proof is based on a new method of estimating fractional moments for the spatial variable of the lace-expansion coefficients. | en_US |
dc.format.extent | 300870 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.relation (關聯) | Probability Theory and Related Fields, 145, 435-458 | en_US |
dc.subject (關鍵詞) | Long-range oriented percolation;Mean-field critical behavior;Limit theorem;Crossover phenomenon;Lace expansion;Fractional moments;60K35;82B27 | en_US |
dc.title (題名) | Critical behavior and the limit distribution for long-range oriented percolation. II: Spatial correlation | en_US |
dc.type (資料類型) | article | en |