dc.contributor | 應數系 | en_US |
dc.creator (作者) | 陳隆奇 | zh_TW |
dc.creator (作者) | Chen, Lung-Chi | en_US |
dc.creator (作者) | Akira Sakai | en_US |
dc.date (日期) | 2011.05 | en_US |
dc.date.accessioned | 13-Nov-2014 17:23:41 (UTC+8) | - |
dc.date.available | 13-Nov-2014 17:23:41 (UTC+8) | - |
dc.date.issued (上傳時間) | 13-Nov-2014 17:23:41 (UTC+8) | - |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/71421 | - |
dc.description.abstract (摘要) | We consider random walk and self-avoiding walk whose 1-step distribution is given by D, and oriented percolation whose bond-occupation probability is proportional to D. Suppose that D(x) decays as |x| -d-α with α > 0. For random walk in any dimension d and for self-avoiding walk and critical/subcritical oriented percolation above the common upper-critical dimension d c ≡ 2(α Λ 2), we prove large-t asymptotics of the gyration radius, which is the average end-to-end distance of random walk/self-avoiding walk of length t or the average spatial size of an oriented percolation cluster at time t. This proves the conjecture for long-range self-avoiding walk in [Ann. Inst. H. Poincaré Probab. Statist. (2010), to appear] and for long-range oriented percolation in [Probab. Theory Related Fields 142 (2008) 151–188] and [Probab. Theory Related Fields 145 (2009) 435–458]. | en_US |
dc.format.extent | 100 bytes | - |
dc.format.mimetype | text/html | - |
dc.language.iso | en_US | - |
dc.relation (關聯) | Annals of probability, 39(2), 507-548 | en_US |
dc.title (題名) | Asymptotic behavior of the gyration radius for long-range self- avoiding walk and long-range oriented percolation | en_US |
dc.type (資料類型) | article | en |
dc.identifier.doi (DOI) | 10.1214/10-AOP557 | - |
dc.doi.uri (DOI) | http://dx.doi.org/10.1214/10-AOP557 | - |