dc.contributor | 應數系 | en_US |
dc.creator (作者) | 陳隆奇 | zh_TW |
dc.creator (作者) | Chen, Lung-Chi | en_US |
dc.date (日期) | 2011-09 | en_US |
dc.date.accessioned | 13-Nov-2014 17:23:44 (UTC+8) | - |
dc.date.available | 13-Nov-2014 17:23:44 (UTC+8) | - |
dc.date.issued (上傳時間) | 13-Nov-2014 17:23:44 (UTC+8) | - |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/71422 | - |
dc.description.abstract (摘要) | We derive exactly the number of Hamiltonian paths H(n) on the two dimensional Sierpinski gasket SG(n) at stage n, whose asymptotic behavior is given by 3√(23√)3n−13×(52×72×172212×35×13)(16)n. We also obtain the number of Hamiltonian paths with one end at a certain outmost vertex of SG(n), with asymptotic behavior 3√(23√)3n−13×(7×1724×33)4n. The distribution of Hamiltonian paths on SG(n) with one end at a certain outmost vertex and the other end at an arbitrary vertex of SG(n) is investigated. We rigorously prove that the exponent for the mean ℓ displacement between the two end vertices of such Hamiltonian paths on SG(n) is ℓlog2/log3 for ℓ>0. | en_US |
dc.format.extent | 312441 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.relation (關聯) | J. Math. Phys. 52, 023301 (2011) | en_US |
dc.title (題名) | Hamiltonian walks on the Sierpinski gasket | en_US |
dc.type (資料類型) | article | en |
dc.identifier.doi (DOI) | 10.1063/1.3545358 | - |
dc.doi.uri (DOI) | http://dx.doi.org/10.1063/1.3545358 | - |