Publications-Periodical Articles

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 A monotonicity result for the range of a perturbed random walk
作者 陳隆奇
Chen, Lung-Chi
孫嶸楓
Sun, Rongfeng
貢獻者 應數系
關鍵詞 Pascal principle;Random walk range;Trapping problem;60K37;60K35;82C22
日期 2014.08
上傳時間 13-Nov-2014 17:26:30 (UTC+8)
摘要 We consider a discrete time simple symmetric random walk on Zd,d≥1, where the path of the walk is perturbed by inserting deterministic jumps. We show that for any time n∈N and any deterministic jumps that we insert, the expected number of sites visited by the perturbed random walk up to time n is always larger than or equal to that for the unperturbed walk. This intriguing problem arises from the study of a particle among a Poisson system of moving traps with sub-diffusive trap motion. In particular, our result implies a variant of the Pascal principle, which asserts that among all deterministic trajectories the particle can follow, the constant trajectory maximizes the particle’s survival probability up to any time
關聯 Journal of Theoretical Probability, 27(3), 997-1010
資料類型 article
DOI http://dx.doi.org/10.1007/s10959-012-0472-x
dc.contributor 應數系en_US
dc.creator (作者) 陳隆奇zh_TW
dc.creator (作者) Chen, Lung-Chien_US
dc.creator (作者) 孫嶸楓zh_TW
dc.creator (作者) Sun, Rongfengen_US
dc.date (日期) 2014.08en_US
dc.date.accessioned 13-Nov-2014 17:26:30 (UTC+8)-
dc.date.available 13-Nov-2014 17:26:30 (UTC+8)-
dc.date.issued (上傳時間) 13-Nov-2014 17:26:30 (UTC+8)-
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/71426-
dc.description.abstract (摘要) We consider a discrete time simple symmetric random walk on Zd,d≥1, where the path of the walk is perturbed by inserting deterministic jumps. We show that for any time n∈N and any deterministic jumps that we insert, the expected number of sites visited by the perturbed random walk up to time n is always larger than or equal to that for the unperturbed walk. This intriguing problem arises from the study of a particle among a Poisson system of moving traps with sub-diffusive trap motion. In particular, our result implies a variant of the Pascal principle, which asserts that among all deterministic trajectories the particle can follow, the constant trajectory maximizes the particle’s survival probability up to any timeen_US
dc.format.extent 230289 bytes-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.relation (關聯) Journal of Theoretical Probability, 27(3), 997-1010en_US
dc.subject (關鍵詞) Pascal principle;Random walk range;Trapping problem;60K37;60K35;82C22en_US
dc.title (題名) A monotonicity result for the range of a perturbed random walken_US
dc.type (資料類型) articleen
dc.identifier.doi (DOI) 10.1007/s10959-012-0472-x-
dc.doi.uri (DOI) http://dx.doi.org/10.1007/s10959-012-0472-x-