dc.contributor | 應數系 | en_US |
dc.creator (作者) | 陳隆奇 | zh_TW |
dc.creator (作者) | Chen, Lung-Chi | en_US |
dc.creator (作者) | 孫嶸楓 | zh_TW |
dc.creator (作者) | Sun, Rongfeng | en_US |
dc.date (日期) | 2014.08 | en_US |
dc.date.accessioned | 13-Nov-2014 17:26:30 (UTC+8) | - |
dc.date.available | 13-Nov-2014 17:26:30 (UTC+8) | - |
dc.date.issued (上傳時間) | 13-Nov-2014 17:26:30 (UTC+8) | - |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/71426 | - |
dc.description.abstract (摘要) | We consider a discrete time simple symmetric random walk on Zd,d≥1, where the path of the walk is perturbed by inserting deterministic jumps. We show that for any time n∈N and any deterministic jumps that we insert, the expected number of sites visited by the perturbed random walk up to time n is always larger than or equal to that for the unperturbed walk. This intriguing problem arises from the study of a particle among a Poisson system of moving traps with sub-diffusive trap motion. In particular, our result implies a variant of the Pascal principle, which asserts that among all deterministic trajectories the particle can follow, the constant trajectory maximizes the particle’s survival probability up to any time | en_US |
dc.format.extent | 230289 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.relation (關聯) | Journal of Theoretical Probability, 27(3), 997-1010 | en_US |
dc.subject (關鍵詞) | Pascal principle;Random walk range;Trapping problem;60K37;60K35;82C22 | en_US |
dc.title (題名) | A monotonicity result for the range of a perturbed random walk | en_US |
dc.type (資料類型) | article | en |
dc.identifier.doi (DOI) | 10.1007/s10959-012-0472-x | - |
dc.doi.uri (DOI) | http://dx.doi.org/10.1007/s10959-012-0472-x | - |