Publications-Periodical Articles

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 Evaluation of Beta Generation Algorithms
作者 Hung,Ying-Chao;Narayanaswamy Balakrishnanb;Lina,Yi-Te
貢獻者 統計系
日期 2009-04
上傳時間 23-Dec-2014 15:09:20 (UTC+8)
摘要 In this article, we provide an overview of well-known beta algorithms. We first study a stochastic search procedure proposed by Kennedy (1988) that asymptotically generates a beta variate. The goal is to identify the optimal parameter setting so that Kennedy`s algorithm can achieve the fastest speed of generation. For comparative purposes, we next evaluate the performance of some selected beta algorithms in terms of the following criteria: (i) validity of choice of shape parameters; (ii) computer generation time; (iii) initial set-up time; (iv) goodness of fit; and (v) amount of random number generation required. Based on the empirical study, we present three useful guidelines for choosing the best suited beta algorithm.
關聯 Communications in Statistics - Simulation and Computation,38(4),750-770
資料類型 article
dc.contributor 統計系en_US
dc.creator (作者) Hung,Ying-Chao;Narayanaswamy Balakrishnanb;Lina,Yi-Teen_US
dc.date (日期) 2009-04en_US
dc.date.accessioned 23-Dec-2014 15:09:20 (UTC+8)-
dc.date.available 23-Dec-2014 15:09:20 (UTC+8)-
dc.date.issued (上傳時間) 23-Dec-2014 15:09:20 (UTC+8)-
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/72220-
dc.description.abstract (摘要) In this article, we provide an overview of well-known beta algorithms. We first study a stochastic search procedure proposed by Kennedy (1988) that asymptotically generates a beta variate. The goal is to identify the optimal parameter setting so that Kennedy`s algorithm can achieve the fastest speed of generation. For comparative purposes, we next evaluate the performance of some selected beta algorithms in terms of the following criteria: (i) validity of choice of shape parameters; (ii) computer generation time; (iii) initial set-up time; (iv) goodness of fit; and (v) amount of random number generation required. Based on the empirical study, we present three useful guidelines for choosing the best suited beta algorithm.en_US
dc.format.extent 243483 bytes-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.relation (關聯) Communications in Statistics - Simulation and Computation,38(4),750-770en_US
dc.title (題名) Evaluation of Beta Generation Algorithmsen_US
dc.type (資料類型) articleen