Publications-Theses
Article View/Open
Publication Export
-
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
題名 學術研究論文推薦系統之研究
Development of a Recommendation System for Academic Research Papers作者 葉博凱 貢獻者 梁定澎
葉博凱關鍵詞 學術論文推薦
協同過濾
關聯規則
冷啟動
FP-Growth
recommendation systems
collaborative filtering
association rules
cold start
FP-Growth日期 2014 上傳時間 3-Feb-2015 10:18:12 (UTC+8) 摘要 推薦系統為網站提升使用者滿意度、減少使用者所花費的時間並且替網站提供方提升銷售,是現在網站中不可或缺的要素,而推薦系統的研究集中在娛樂項目,學術研究論文推薦系統的研究有限。若能給予有價值的相關文獻,提供協助,無疑是加速進步的速度。在過去的研究中,為了達到個人化目的所使用的方法,都有不可避免或未解決的缺點,2002年美國研究圖書館協會提出布達佩斯開放獲取計劃(Budapest Open Access Initiative),不要求使用者註冊帳號與支付款項就能取得研究論文全文,這樣的做法使期刊走向開放的風氣開始盛行,時至今日,開放獲取對學術期刊網站帶來重大的影響。在這樣的時空背景之下,本研究提出一個適用於學術論文之推薦機制,以FP-Growth演算法與協同過濾做為推薦方法的基礎,消弭過去研究之缺點,並具個人化推薦的優點,經實驗驗證後,證實本研究所提出的推薦架構具有良好的成效。
Recommendation system is used in many field like movie, music, electric commerce and library. It’s not only save customers’ time but also raise organizations’ efficient. Recommended system is an essential element in a website. Some methods have been developed for recommended system, but they are primarily focused on content or collaboration-based mechanisms. For academic research, it is very important that relevant literature can be provided to researchers when they conduct literature review. Previous research indicates that there are inevitable or unsolved shortcomings in existing methods such as cold starts. Association of Research Libraries purpose “Budapest Open Access Initiative” that is advocate open access concept. Open access means that users can get full paper without register and pay fee. It’s a major impact to academic journal website.In this space-time background, we propose a hybrid recommendation mechanism that takes into consideration the nature of recommendation academic papers to mitigate the shortcomings of existing methods.參考文獻 一、 中文部分1. 余明哲,2002,圖書館個人化館藏推薦系統,國立交通大學碩士論文。2. 邱建豪,2008,使用分群結合技術增進線上產品的推薦–以MovieLens為例,國立中正大學碩士論文。3. 張景堯,2007,以多重觀點本體論驅策之系統發展方法,國立政治大學博士論文。4. 許正怡,2008,植基於個人本體論模型與合作式過濾技術之中文圖書館推薦系統,國立中興大學碩士論文。5. 郭秉仁,2012,基於個人本體論與MapReduce技術之圖書推薦系統,國立中興大學碩士論文。6. 陳慧玲,2007,植基於個人本體論的圖書館推薦系統-以中興大學圖書館為例,國立中興大學碩士論文。7. 廖學毅,2007,動態協同式過濾推薦之系統實做,國立交通大學碩士論文。8. 蔡松霖,2013,電子商務推薦系統模型之初探,國立東華大學博士論文。9. 羅子文,2007,Web 2.0概念的圖書館個人化推薦系統,國立交通大學碩士論文。10. 楊永芳,2002,語意擴充式文件推薦方法之研究,國立中山大學碩士論文。二、 英文部分1. Adomavicius, G., & Tuzhilin, A. (2004). Recommendation Technologies: Survey of Current Methods and Possible Extensions (Working Paper). Stern School of Business, New York University. 2. Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining Association Rules Between Sets of Items in Large Databases. Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, New York, NY, USA, pp. 207–216. 3. Agrawal, R., & Srikant, R. (1994). Fast Algorithms for Mining Association Rules in Large Databases. Proceedings of the 20th International Conference on Very Large Data Bases, pp. 487–499.4. Arslan, A., & Yilmazel, O. (2011). Frequent Pattern Mining Over Movie Plot Keywords. In International Conference on Computer and Computer Intelligence (ICCCI 2011), ASME Press.5. Bobadilla, J., Ortega, F., Hernando, A., & Bernal, J. (2012). A collaborative filtering approach to mitigate the new user cold start problem. Knowledge-Based Systems, Vol. 26, 225–238. 6. Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems survey. Knowledge-Based Systems, Vol. 46, pp. 109–132.7. Borgelt, C. (2005). An Implementation of the FP-growth Algorithm. Proceedings of the 1st International Workshop on Open Source Data Mining: Frequent Pattern Mining Implementations, New York, NY, USA, pp. 1–5.8. Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical Analysis of Predictive Algorithms for Collaborative Filtering. Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc, pp. 43–52.9. Christakou, C., & Stafylopatis, A. (2005). A hybrid movie recommender system based on neural networks. 5th International Conference on Intelligent Systems Design and Applications, 2005. ISDA ’05. Proceedings, pp. 500–505. 10. Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using Collaborative Filtering to Weave an Information Tapestry. Commun. ACM, Vol. 35(12), pp. 61–70. 11. Han, J., Pei, J., & Yin, Y. (2000). Mining Frequent Patterns Without Candidate Generation. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, New York, NY, USA, pp. 1–12.12. He, J., & Chu, W. W. (2010). A Social Network-Based Recommender System (SNRS). Data Mining for Social Network Data, pp. 47–74.13. He, Q., Pei, J., Kifer, D., Mitra, P., & Giles, L. (2010). Context-aware Citation Recommendation. Proceedings of the 19th International Conference on World Wide Web, New York, NY, USA, pp. 421–43014. Herlocker, J. L., Konstan, J. A., Borchers, A., & Riedl, J. (1999). An Algorithmic Framework for Performing Collaborative Filtering. Proceedings of the 22Nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, NY, USA, pp. 230–237.15. Jinha, A. E. (2010). Article 50 million: an estimate of the number of scholarly articles in existence. Learned Publishing, Vol. 23(3), pp. 258–263.16. Kantor, P. B., Rokach, L., Ricci, F., & Shapira, B. (2011). Recommender systems handbook. Springer.17. Kim, B.-D., & Kim, S.-O. (2001). A new recommender system to combine content-based and collaborative filtering systems. Journal of Database Marketing & Customer Strategy Management, Vol. 8(3), pp. 244–252. 18. Kim, W., Choi, D. W., & Park, S. (2008). Agent based intelligent search framework for product information using ontology mapping. Journal of Intelligent Information Systems, Vol. 30(3), pp. 227–247. 19. Koren, Y. (2008). Factorization Meets the Neighborhood: A Multifaceted Collaborative Filtering Model. Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, pp. 426–434.20. Lee, J., Lee, K., & Kim, J. G. (2013). Personalized Academic Research Paper Recommendation System. arXiv preprint arXiv:1304.5457. 21. Liang, T.-P., Yang, Y.-F., Chen, D.-N., & Ku, Y.-C. (2008). A semantic-expansion approach to personalized knowledge recommendation. Decision Support Systems, Vol. 45(3), pp. 401–412. 22. Lilien, G. L., Rangaswamy, A., Van Bruggen, G. H., & Starke, K. (2004). DSS Effectiveness in Marketing Resource Allocation Decisions: Reality vs. Perception. Information Systems Research, Vol. 15(3), pp. 216–235.23. Lin, C.-W., Hong, T.-P., & Lu, W.-H. (2009). The Pre-FUFP algorithm for incremental mining. Expert Systems with Applications, Vol. 36(5), pp. 9498–9505.24. Linden, G., Smith, B., & York, J. (2003). Amazon.Com Recommendations: Item-to-Item Collaborative Filtering. IEEE Internet Computing, Vol. 7(1), pp. 76–80.25. LUO, J., & LI, Y. M. (2010). Improvement on Algorithm FP-Growth and Applications in Its E-Commerce. Journal of China West Normal University (Natural Sciences), 3, 018.26. Matsatsinis, N. F., Lakiotaki, K., & Delias, P. (2007). A System based on Multiple Criteria Analysis for Scientific Paper Recommendation, Technical University of Crete.27. McLaughlin, M. R., & Herlocker, J. L. (2004). A Collaborative Filtering Algorithm and Evaluation Metric That Accurately Model the User Experience. Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, NY, USA, pp. 329–336.28. Naak, A., Hage, H., & Aïmeur, E. (2009). A Multi-criteria Collaborative Filtering Approach for Research Paper Recommendation in Papyres, E-Technologies: Innovation in an Open World, Springer Berlin Heidelberg, pp. 25–39.29. Nunamaker, J. F., Jr., Chen, M., & Purdin, T. D. M. (1990). Systems Development in Information Systems Research. J. Manage. Inf. Syst., Vol. 7(3), pp. 89–106.30. Palopoli, L., Rosaci, D., & Sarné, G. M. L. (2013). A Multi-tiered Recommender System Architecture for Supporting E-Commerce, Intelligent Distributed Computing VI . Springer Berlin Heidelberg, pp. 71–81.31. Piateski, G., & Frawley, W. (1991). Knowledge discovery in databases. MIT press.32. PIATETSKY-SHAPIRO, G. (1991). Discovery, Analysis and Presentation of Strong Rules. Knowledge Discovery in Databases, pp. 229–238.33. Resnick, P., & Varian, H. R. (1997). Recommender Systems, Commun. ACM, Vol. 40(3), pp. 56–58.34. Salton, G., Wong, A., & Yang, C. S. (1975). A Vector Space Model for Automatic Indexing. Commun. ACM, Vol. 18(11), pp. 613–620. 35. Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000). Analysis of Recommendation Algorithms for e-Commerce. Proceedings of the 2Nd ACM Conference on Electronic Commerce, New York, NY, USA, pp. 158–167.36. Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based Collaborative Filtering Recommendation Algorithms. Proceedings of the 10th International Conference on World Wide Web ,New York, NY, USA, pp. 285–29537. Sarwar, B. M., Konstan, J. A., Borchers, A., Herlocker, J., Miller, B., & Riedl, J. (1998). Using Filtering Agents to Improve Prediction Quality in the GroupLens Research Collaborative Filtering System. Proceedings of the 1998 ACM Conference on Computer Supported Cooperative Work, New York, NY, USA, pp. 345–354.38. Sinha, R., Sinha, and R., & Swearingen, K. (2001). Comparing Recommendations Made by Online Systems and Friends. Proceedings of the DELOS-NSF Workshop on Personalization and Recommender Systems in Digital Libraries.39. Sugiyama, K., & Kan, M.-Y. (2010). Scholarly Paper Recommendation via User’s Recent Research Interests. Proceedings of the 10th Annual Joint Conference on Digital Libraries, New York, NY, USA, pp. 29–38.40. Tan, P.-N., Steinbach, M., & Kumar, V. (2005). Introduction to data mining. Boston: Pearson Addison Wesley.41. Wang, H.-F., & Wu, C.-T. (2012). A strategy-oriented operation module for recommender systems in E-commerce. Computers & Operations Research, Vol. 39(8), pp. 1837–1849.42. Wang, K., Tang, L., Han, J., & Liu, J. (2002). Top Down FP-Growth for Association Rule Mining. , Advances in Knowledge Discovery and Data Mining. pp. 334–340.43. Wang, Y., Liu, J., Dong, X., Liu, T., & Huang, Y. (2012). Personalized Paper Recommendation Based on User Historical Behavior. In M. Zhou, G. Zhou, D. Zhao, Q. Liu, & L. Zou (Eds.), Natural Language Processing and Chinese Computing, Springer Berlin Heidelberg. Retrieved from, pp. 1–12.44. Xiaoyun, C., Yanshan, H., Pengfei, C., Shengfa, M., Weiguo, S., & Min, Y. (2009). HPFP-Miner: A Novel Parallel Frequent Itemset Mining Algorithm. In Fifth International Conference on Natural Computation, 2009. ICNC ’09, Vol.3, pp. 139–143.45. Zaki, M. J. (2000). Scalable Algorithms for Association Mining. IEEE Trans. on Knowl. and Data Eng., Vol. 12(3), pp. 372–390. 三、 網路部分1. Open Access, Association of Research Libraries, http://www.arl.org/focus-areas/open-scholarship/open-access。 描述 碩士
國立政治大學
資訊管理研究所
101356003
103資料來源 http://thesis.lib.nccu.edu.tw/record/#G0101356003 資料類型 thesis dc.contributor.advisor 梁定澎 zh_TW dc.contributor.author (Authors) 葉博凱 zh_TW dc.creator (作者) 葉博凱 zh_TW dc.date (日期) 2014 en_US dc.date.accessioned 3-Feb-2015 10:18:12 (UTC+8) - dc.date.available 3-Feb-2015 10:18:12 (UTC+8) - dc.date.issued (上傳時間) 3-Feb-2015 10:18:12 (UTC+8) - dc.identifier (Other Identifiers) G0101356003 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/73238 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 資訊管理研究所 zh_TW dc.description (描述) 101356003 zh_TW dc.description (描述) 103 zh_TW dc.description.abstract (摘要) 推薦系統為網站提升使用者滿意度、減少使用者所花費的時間並且替網站提供方提升銷售,是現在網站中不可或缺的要素,而推薦系統的研究集中在娛樂項目,學術研究論文推薦系統的研究有限。若能給予有價值的相關文獻,提供協助,無疑是加速進步的速度。在過去的研究中,為了達到個人化目的所使用的方法,都有不可避免或未解決的缺點,2002年美國研究圖書館協會提出布達佩斯開放獲取計劃(Budapest Open Access Initiative),不要求使用者註冊帳號與支付款項就能取得研究論文全文,這樣的做法使期刊走向開放的風氣開始盛行,時至今日,開放獲取對學術期刊網站帶來重大的影響。在這樣的時空背景之下,本研究提出一個適用於學術論文之推薦機制,以FP-Growth演算法與協同過濾做為推薦方法的基礎,消弭過去研究之缺點,並具個人化推薦的優點,經實驗驗證後,證實本研究所提出的推薦架構具有良好的成效。 zh_TW dc.description.abstract (摘要) Recommendation system is used in many field like movie, music, electric commerce and library. It’s not only save customers’ time but also raise organizations’ efficient. Recommended system is an essential element in a website. Some methods have been developed for recommended system, but they are primarily focused on content or collaboration-based mechanisms. For academic research, it is very important that relevant literature can be provided to researchers when they conduct literature review. Previous research indicates that there are inevitable or unsolved shortcomings in existing methods such as cold starts. Association of Research Libraries purpose “Budapest Open Access Initiative” that is advocate open access concept. Open access means that users can get full paper without register and pay fee. It’s a major impact to academic journal website.In this space-time background, we propose a hybrid recommendation mechanism that takes into consideration the nature of recommendation academic papers to mitigate the shortcomings of existing methods. en_US dc.description.tableofcontents 第一章 緒論 1第一節 研究背景與動機 1第二節 研究目的 3第二章 文獻探討 5第一節 推薦系統定義與概述 5第二節 相關研究 5第三節 推薦系統分類 13第四節 推薦系統常見問題 162.4.1 推薦系統的共同問題 162.4.2 協同推薦系統的常見問題 162.4.3 內容基礎推薦的常見問題 17第五節 關聯規則探勘 182.5.1 關聯規則之定義與目的 182.5.2 關聯規則探勘方法 19第六節 小結 20第三章 研究方法 21第一節 設計科學的研究方法 21第二節 期刊網站現況 22第三節 推薦系統設計 24第四節 資料蒐集 273.4.1 計算閱讀習慣相似之輸入與評分 27第五節 詞頻分析模組 28第六節 使用者相似度計算模組 293.6.1. Pearson變數說明與公式 30第七節 關聯規則分析模組 303.7.1 FP-tree之建構與表示 303.7.2 FP-growth高頻項目集之產生 32第四章 實驗設計 36第一節 研究假說 37第二節 資料前置處理 38第三節 實驗設計與實驗流程 38第四節 實證結果分析 414.4.1 分析方法 414.4.2 資料分析 41第五章 結論 43第一節 研究結果 43第二節 研究貢獻 44第三節 研究限制 45第四節 未來研究方向 45 zh_TW dc.format.extent 1687443 bytes - dc.format.mimetype application/pdf - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0101356003 en_US dc.subject (關鍵詞) 學術論文推薦 zh_TW dc.subject (關鍵詞) 協同過濾 zh_TW dc.subject (關鍵詞) 關聯規則 zh_TW dc.subject (關鍵詞) 冷啟動 zh_TW dc.subject (關鍵詞) FP-Growth zh_TW dc.subject (關鍵詞) recommendation systems en_US dc.subject (關鍵詞) collaborative filtering en_US dc.subject (關鍵詞) association rules en_US dc.subject (關鍵詞) cold start en_US dc.subject (關鍵詞) FP-Growth en_US dc.title (題名) 學術研究論文推薦系統之研究 zh_TW dc.title (題名) Development of a Recommendation System for Academic Research Papers en_US dc.type (資料類型) thesis en dc.relation.reference (參考文獻) 一、 中文部分1. 余明哲,2002,圖書館個人化館藏推薦系統,國立交通大學碩士論文。2. 邱建豪,2008,使用分群結合技術增進線上產品的推薦–以MovieLens為例,國立中正大學碩士論文。3. 張景堯,2007,以多重觀點本體論驅策之系統發展方法,國立政治大學博士論文。4. 許正怡,2008,植基於個人本體論模型與合作式過濾技術之中文圖書館推薦系統,國立中興大學碩士論文。5. 郭秉仁,2012,基於個人本體論與MapReduce技術之圖書推薦系統,國立中興大學碩士論文。6. 陳慧玲,2007,植基於個人本體論的圖書館推薦系統-以中興大學圖書館為例,國立中興大學碩士論文。7. 廖學毅,2007,動態協同式過濾推薦之系統實做,國立交通大學碩士論文。8. 蔡松霖,2013,電子商務推薦系統模型之初探,國立東華大學博士論文。9. 羅子文,2007,Web 2.0概念的圖書館個人化推薦系統,國立交通大學碩士論文。10. 楊永芳,2002,語意擴充式文件推薦方法之研究,國立中山大學碩士論文。二、 英文部分1. Adomavicius, G., & Tuzhilin, A. (2004). Recommendation Technologies: Survey of Current Methods and Possible Extensions (Working Paper). Stern School of Business, New York University. 2. Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining Association Rules Between Sets of Items in Large Databases. Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, New York, NY, USA, pp. 207–216. 3. Agrawal, R., & Srikant, R. (1994). Fast Algorithms for Mining Association Rules in Large Databases. Proceedings of the 20th International Conference on Very Large Data Bases, pp. 487–499.4. Arslan, A., & Yilmazel, O. (2011). Frequent Pattern Mining Over Movie Plot Keywords. In International Conference on Computer and Computer Intelligence (ICCCI 2011), ASME Press.5. Bobadilla, J., Ortega, F., Hernando, A., & Bernal, J. (2012). A collaborative filtering approach to mitigate the new user cold start problem. Knowledge-Based Systems, Vol. 26, 225–238. 6. Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems survey. Knowledge-Based Systems, Vol. 46, pp. 109–132.7. Borgelt, C. (2005). An Implementation of the FP-growth Algorithm. Proceedings of the 1st International Workshop on Open Source Data Mining: Frequent Pattern Mining Implementations, New York, NY, USA, pp. 1–5.8. Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical Analysis of Predictive Algorithms for Collaborative Filtering. Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc, pp. 43–52.9. Christakou, C., & Stafylopatis, A. (2005). A hybrid movie recommender system based on neural networks. 5th International Conference on Intelligent Systems Design and Applications, 2005. ISDA ’05. Proceedings, pp. 500–505. 10. Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using Collaborative Filtering to Weave an Information Tapestry. Commun. ACM, Vol. 35(12), pp. 61–70. 11. Han, J., Pei, J., & Yin, Y. (2000). Mining Frequent Patterns Without Candidate Generation. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, New York, NY, USA, pp. 1–12.12. He, J., & Chu, W. W. (2010). A Social Network-Based Recommender System (SNRS). Data Mining for Social Network Data, pp. 47–74.13. He, Q., Pei, J., Kifer, D., Mitra, P., & Giles, L. (2010). Context-aware Citation Recommendation. Proceedings of the 19th International Conference on World Wide Web, New York, NY, USA, pp. 421–43014. Herlocker, J. L., Konstan, J. A., Borchers, A., & Riedl, J. (1999). An Algorithmic Framework for Performing Collaborative Filtering. Proceedings of the 22Nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, NY, USA, pp. 230–237.15. Jinha, A. E. (2010). Article 50 million: an estimate of the number of scholarly articles in existence. Learned Publishing, Vol. 23(3), pp. 258–263.16. Kantor, P. B., Rokach, L., Ricci, F., & Shapira, B. (2011). Recommender systems handbook. Springer.17. Kim, B.-D., & Kim, S.-O. (2001). A new recommender system to combine content-based and collaborative filtering systems. Journal of Database Marketing & Customer Strategy Management, Vol. 8(3), pp. 244–252. 18. Kim, W., Choi, D. W., & Park, S. (2008). Agent based intelligent search framework for product information using ontology mapping. Journal of Intelligent Information Systems, Vol. 30(3), pp. 227–247. 19. Koren, Y. (2008). Factorization Meets the Neighborhood: A Multifaceted Collaborative Filtering Model. Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, pp. 426–434.20. Lee, J., Lee, K., & Kim, J. G. (2013). Personalized Academic Research Paper Recommendation System. arXiv preprint arXiv:1304.5457. 21. Liang, T.-P., Yang, Y.-F., Chen, D.-N., & Ku, Y.-C. (2008). A semantic-expansion approach to personalized knowledge recommendation. Decision Support Systems, Vol. 45(3), pp. 401–412. 22. Lilien, G. L., Rangaswamy, A., Van Bruggen, G. H., & Starke, K. (2004). DSS Effectiveness in Marketing Resource Allocation Decisions: Reality vs. Perception. Information Systems Research, Vol. 15(3), pp. 216–235.23. Lin, C.-W., Hong, T.-P., & Lu, W.-H. (2009). The Pre-FUFP algorithm for incremental mining. Expert Systems with Applications, Vol. 36(5), pp. 9498–9505.24. Linden, G., Smith, B., & York, J. (2003). Amazon.Com Recommendations: Item-to-Item Collaborative Filtering. IEEE Internet Computing, Vol. 7(1), pp. 76–80.25. LUO, J., & LI, Y. M. (2010). Improvement on Algorithm FP-Growth and Applications in Its E-Commerce. Journal of China West Normal University (Natural Sciences), 3, 018.26. Matsatsinis, N. F., Lakiotaki, K., & Delias, P. (2007). A System based on Multiple Criteria Analysis for Scientific Paper Recommendation, Technical University of Crete.27. McLaughlin, M. R., & Herlocker, J. L. (2004). A Collaborative Filtering Algorithm and Evaluation Metric That Accurately Model the User Experience. Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, NY, USA, pp. 329–336.28. Naak, A., Hage, H., & Aïmeur, E. (2009). A Multi-criteria Collaborative Filtering Approach for Research Paper Recommendation in Papyres, E-Technologies: Innovation in an Open World, Springer Berlin Heidelberg, pp. 25–39.29. Nunamaker, J. F., Jr., Chen, M., & Purdin, T. D. M. (1990). Systems Development in Information Systems Research. J. Manage. Inf. Syst., Vol. 7(3), pp. 89–106.30. Palopoli, L., Rosaci, D., & Sarné, G. M. L. (2013). A Multi-tiered Recommender System Architecture for Supporting E-Commerce, Intelligent Distributed Computing VI . Springer Berlin Heidelberg, pp. 71–81.31. Piateski, G., & Frawley, W. (1991). Knowledge discovery in databases. MIT press.32. PIATETSKY-SHAPIRO, G. (1991). Discovery, Analysis and Presentation of Strong Rules. Knowledge Discovery in Databases, pp. 229–238.33. Resnick, P., & Varian, H. R. (1997). Recommender Systems, Commun. ACM, Vol. 40(3), pp. 56–58.34. Salton, G., Wong, A., & Yang, C. S. (1975). A Vector Space Model for Automatic Indexing. Commun. ACM, Vol. 18(11), pp. 613–620. 35. Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000). Analysis of Recommendation Algorithms for e-Commerce. Proceedings of the 2Nd ACM Conference on Electronic Commerce, New York, NY, USA, pp. 158–167.36. Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based Collaborative Filtering Recommendation Algorithms. Proceedings of the 10th International Conference on World Wide Web ,New York, NY, USA, pp. 285–29537. Sarwar, B. M., Konstan, J. A., Borchers, A., Herlocker, J., Miller, B., & Riedl, J. (1998). Using Filtering Agents to Improve Prediction Quality in the GroupLens Research Collaborative Filtering System. Proceedings of the 1998 ACM Conference on Computer Supported Cooperative Work, New York, NY, USA, pp. 345–354.38. Sinha, R., Sinha, and R., & Swearingen, K. (2001). Comparing Recommendations Made by Online Systems and Friends. Proceedings of the DELOS-NSF Workshop on Personalization and Recommender Systems in Digital Libraries.39. Sugiyama, K., & Kan, M.-Y. (2010). Scholarly Paper Recommendation via User’s Recent Research Interests. Proceedings of the 10th Annual Joint Conference on Digital Libraries, New York, NY, USA, pp. 29–38.40. Tan, P.-N., Steinbach, M., & Kumar, V. (2005). Introduction to data mining. Boston: Pearson Addison Wesley.41. Wang, H.-F., & Wu, C.-T. (2012). A strategy-oriented operation module for recommender systems in E-commerce. Computers & Operations Research, Vol. 39(8), pp. 1837–1849.42. Wang, K., Tang, L., Han, J., & Liu, J. (2002). Top Down FP-Growth for Association Rule Mining. , Advances in Knowledge Discovery and Data Mining. pp. 334–340.43. Wang, Y., Liu, J., Dong, X., Liu, T., & Huang, Y. (2012). Personalized Paper Recommendation Based on User Historical Behavior. In M. Zhou, G. Zhou, D. Zhao, Q. Liu, & L. Zou (Eds.), Natural Language Processing and Chinese Computing, Springer Berlin Heidelberg. Retrieved from, pp. 1–12.44. Xiaoyun, C., Yanshan, H., Pengfei, C., Shengfa, M., Weiguo, S., & Min, Y. (2009). HPFP-Miner: A Novel Parallel Frequent Itemset Mining Algorithm. In Fifth International Conference on Natural Computation, 2009. ICNC ’09, Vol.3, pp. 139–143.45. Zaki, M. J. (2000). Scalable Algorithms for Association Mining. IEEE Trans. on Knowl. and Data Eng., Vol. 12(3), pp. 372–390. 三、 網路部分1. Open Access, Association of Research Libraries, http://www.arl.org/focus-areas/open-scholarship/open-access。 zh_TW