Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 以典型瑞特氏症模式小鼠研究運動障礙之療癒
In search of interventions to ameliorate motor deficits in mouse models of typical Rett syndrome
作者 黃弈博
Huang, Yi Bo
貢獻者 廖文霖
Liao, Wen Lin
黃弈博
Huang, Yi Bo
關鍵詞 瑞特氏症
第二型甲基CpG結合蛋白
紋狀體
γ-胺基丁酸
厚朴生藥
和厚朴酚合成純化物
Rett syndrome
Mecp2
Striatum
GABA
cortex Magnoliae
MH101
日期 2014
上傳時間 1-Apr-2015 10:02:46 (UTC+8)
摘要 瑞特氏症 (Rett syndrome, RTT)是由於第二型甲基CpG結合蛋白 (methyl - CpG binding protein 2, MECP2) 基因發生突變所造成的一種神經發育疾病。當小鼠的MeCP2缺失時,會產生許多類似瑞特氏症患者的運動障礙,其中包含運動活力低下、運動協調與運動學習能力缺損,此運動障礙可能由於γ-胺基丁酸(GABA)與多巴胺神經訊號傳遞功能失調所造成。先前研究發現Mecp2基因剔除小鼠的運動障礙伴隨大腦皮質與紋狀體中GABA合成的減少,我們因此嘗試利用藥理的方式增加GABA傳訊,測試其是否可改善Mecp2基因剔除小鼠的運動障礙。我們發現Mecp2基因剔除以及條件缺失公鼠,經由管餵方式給予100 mg/kg厚朴生藥 (cortex Magnoliae)連續七天後,對於平衡桿行走測試以及加速滾輪測試有改善的趨勢,但是對於Mecp2T158A點突變公鼠以及條件缺失母鼠卻沒有效果。我們進而檢測和厚朴酚合成純化物 (以下簡稱MH101)對運動障礙的改善效果。在行為測試前九十分鐘腹腔給予 1 mg/kg的MH101並觀察待測鼠在加速滾輪上的掉落延宕時間, 發現Mecp2條件缺失母鼠在投藥後,與控制組母鼠在同樣藥物處理下相近,顯示MH101有改善運動障礙的效果。以免疫染色法觀察c-Fos蛋白表現量檢測神經細胞的活性,發現在投予MH101後,控制組母鼠的c-Fos蛋白表現量在紋狀體之內背側區有顯著的增加,且Mecp2條件缺失母鼠相對應的腦區也有增加的趨勢,而其他皮質腦區卻皆無明顯改變,其結果顯示內背側紋狀體的活性增加可能與Mecp2條件缺失母鼠的運動協調能力增加有所關聯。另一方面,先前研究指出瑞特氏症模式小鼠的前端紋狀體中,有μ型類鴉片受體表現量減少以及第二型多巴胺受體的過度表現,所以我們嘗試在野生型小鼠的前端紋狀體活化其μ型類鴉片受體或是減少第二型多巴胺受體的神經傳導,檢測是否能夠增加其運動能力。實驗結果顯示,不論是給予μ型類鴉片受體促效劑或是第二型多巴胺受體拮抗劑皆可有效防止手術後之運動活力表現的缺損,因此,於前端紋狀體活化μ型類鴉片受體或阻斷第二型多巴胺受體可能改善小鼠之運動障礙。綜上所述,本研究藉由改善神經傳導的缺失緩解瑞特氏症模式小鼠部份的運動障礙,提供典型瑞特氏症可能有效的治療方式。
Rett Syndrome (RTT) is a neurodevelopmental disorder caused by mutations of the methyl-CpG-binding protein 2 (MECP2). Mice with deficient MeCP2 recapitulate many RTT-like motor symptoms, including hypoactivity, deficits in motor coordination, and motor learning, those are associated with hypofunction of GABAergic and dopaminergic neurotransmission. Previous study found that decreased GABA synthesis in the striatum is accompanied by motor deficits in Mecp2-null mice, here we attempt to examine whether pharmacological interventions by increasing GABA transmission could ameliorate motor deficits in Mecp2 mutant mice. We found that Mecp2-null mice and conditional knockout (cKO) male mice, but not mice carrying Mecp2T158A point mutation and cKO old female mice, administered with the cortex Magnoliae for 7 days via oral gavage at the dose of 100 mg/kg, showed a trend of improvement on open field test, beam walking task or rotarod task. We next tested the therapeutic effects of MH101 (a synthetic analog of honokiol),which is a GABAA receptor agonist derived from the bark of the plant Magnolia officinalis. We found that female cKO mice showed improvement on the rotarod performance after administration of 1 mg/kg MH101 90 mins prior to behavior tests. By examining expression of c-Fos protein, an indicator of neuronal activity, in different cortical and striatal regions with immunohistochemistry, we found that the MH101 treatment increased c-Fos expression in dorsomedial part of the rostral striatum in both control and cKO mice, but without significant alteration in the cortical neuron activity, suggesting that neuronal activity in the dorsomedial part of the rostral striatum may be related to increased motor learning in Mecp2 cKO female mice. On the other hand, the reduced expression of mu opioid receptor 1 and increased dopamine D2 receptor in the rostral striatum of RTT-like mice had been demonstrated in our previous study, we thus try to test whether activation of MOR1 or blockade of DRD2 in the rostral striatum could enhance motor function in wild-type mice. The results indicated that both treatments prevented post-surgery hypoactivity, suggesting that opioid and dopaminergic drugs could be alternative choices for improving motor deficits in RTT-like animal models. Taken together, our findings provide a proof-of-principle for novel pharmacological therapeutics to ameliorate motor deficits in mouse models of typical Rett syndrome.
參考文獻 Abdala AP, Dutschmann M, Bissonnette JM, Paton JF (2010) Correction of respiratory disorders in a mouse model of Rett syndrome. Proceedings of the National Academy of Sciences 107:18208-18213.

Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature genetics 23:185-188.

Briggs A (2013) Primary care of a child with Rett syndrome. Journal of the American Association of Nurse Practitioners.

Castro J, Garcia RI, Kwok S, Banerjee A, Petravicz J, Woodson J, Mellios N, Tropea D, Sur M (2014) Functional recovery with recombinant human IGF1 treatment in a mouse model of Rett Syndrome. Proceedings of the National Academy of Sciences 111:9941-9946.

Cazorla M, de Carvalho FD, Chohan MO, Shegda M, Chuhma N, Rayport S, Ahmari SE, Moore H, Kellendonk C (2014) Dopamine d2 receptors regulate the anatomical and functional balance of Basal Ganglia circuitry. Neuron 81:153-164.

Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, Zoghbi HY (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320:1224-1229.

Chahrour M, Zoghbi HY (2007) The story of Rett syndrome: from clinic to neurobiology. Neuron 56:422-437.

Chao H-T, Chen H, Samaco RC, Xue M, Chahrour M, Yoo J, Neul JL, Gong S, Lu H-C, Heintz N, Ekker M, Rubenstein LR, Noebel JL, Rosenmund C, Zoghbi HY (2010) Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468:263-269.

Chao H-T, Zoghbi HY (2012) MeCP2: only 100% will do. Nature neuroscience 15:176-177.

Chen WG, Chang Q, Lin Y, Meissner A, West AE, Griffith EC, Jaenisch R, Greenberg ME (2003) Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302:885-889.

Chen RZ, Akbarian S, Tudor M, Jaenisch R (2001) Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nature genetics 27:327-331.

Choi WY, Morvan C, Balsam PD, Horvitz JC (2009) Dopamine D1 and D2 antagonist effects on response likelihood and duration. Behavioral neuroscience 123:1279.

Colvin L, Leonard H, De Klerk N, Davis M, Weaving L, Williamson S, Christodoulou J (2004) Refining the phenotype of common mutations in Rett syndrome. Journal of medical genetics 41:25-30.

Costa RM, Cohen D, Nicolelis MA (2004) Differential corticostriatal plasticity during fast and slow motor skill learning in mice. Current Biology 14:1124-1134.

Damen D, Heumann R (2013) MeCP2 phosphorylation in the brain: from transcription to behavior. Biological chemistry 394:1595-1605.

Dehorter N, Guigoni C, Lopez C, Hirsch J, Eusebio A, Ben-Ari Y, Hammond C (2009) Dopamine-deprived striatal GABAergic interneurons burst and generate repetitive gigantic IPSCs in medium spiny neurons. The Journal of Neuroscience 29:7776-7787.

Deogracias R, Yazdani M, Dekkers MP, Guy J, Ionescu MCS, Vogt KE, Barde Y-A (2012) Fingolimod, a sphingosine-1 phosphate receptor modulator, increases BDNF levels and improves symptoms of a mouse model of Rett syndrome. Proceedings of the National Academy of Sciences 109:14230-14235.

Durieux PF, Schiffmann SN, de Kerchove d’Exaerde A (2011) Targeting neuronal populations of the striatum. Frontiers in neuroanatomy 5.

El-Khoury R, Panayotis N, Matagne V, Ghata A, Villard L, Roux J-C (2014) GABA and Glutamate Pathways Are Spatially and Developmentally Affected in the Brain of Mecp2-Deficient Mice. PloS one 9:e92169.

Fried LE, Arbiser JL (2009) Honokiol, a multifunctional antiangiogenic and antitumor agent. Antioxidants & redox signaling 11:1139-1148.

Fyffe SL, Neul JL, Samaco RC, Chao H-T, Ben-Shachar S, Moretti P, McGill BE, Goulding EH, Sullivan E, Tecott LH, Zoghbi HY (2008) Deletion of Mecp2 in Sim1-Expressing Neurons Reveals a Critical Role for MeCP2 in Feeding Behavior, Aggression, and the Response to Stress. Neuron 59:947-958.

Gantz SC, Ford CP, Neve KA, Williams JT (2011) Loss of Mecp2 in substantia nigra dopamine neurons compromises the nigrostriatal pathway. The Journal of Neuroscience 31:12629-12637.

Garg SK, Lioy DT, Cheval H, McGann JC, Bissonnette JM, Murtha MJ, Foust KD, Kaspar BK, Bird A, Mandel G (2013) Systemic delivery of MeCP2 rescues behavioral and cellular deficits in female mouse models of Rett syndrome. The Journal of Neuroscience 33:13612-13620.

Gemelli T, Berton O, Nelson ED, Perrotti LI, Jaenisch R, Monteggia LM (2006) Postnatal loss of methyl-CpG binding protein 2 in the forebrain is sufficient to mediate behavioral aspects of Rett syndrome in mice. Biological psychiatry 59:468-476.

Goffin D, Allen M, Zhang L, Amorim M, Wang I-TJ, Reyes A-RS, Mercado-Berton A, Ong C, Cohen S, Hu L, Blendy JA, Carlson GC, Siegel SJ, Greenberg ME, Zhou Z (2012) Rett syndrome mutation MeCP2 T158A disrupts DNA binding, protein stability and ERP responses. Nature neuroscience 15:274-283.

Gonchar Y, Burkhalter A (1997) Three distinct families of GABAergic neurons in rat visual cortex. Cerebral Cortex 7:347-358.

Groenewegen HJ (2003) The basal ganglia and motor control. Neural plasticity 10:107-120.

Guy J, Gan J, Selfridge J, Cobb S, Bird A (2007) Reversal of neurological defects in a mouse model of Rett syndrome. Science 315:1143-1147.

Guy J, Hendrich B, Holmes M, Martin JE, Bird A (2001) A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nature genetics 27:322-326.

Hagberg B (2002) Clinical manifestations and stages of Rett syndrome. Mental retardation and developmental disabilities research reviews 8:61-65.

Kao F-C, Su S-H, Carlson GC, Liao W (2013) MeCP2-mediated alterations of striatal features accompany psychomotor deficits in a mouse model of Rett syndrome. Brain Structure and Function 1-16.

Khwaja OS, Ho E, Barnes KV, O’Leary HM, Pereira LM, Finkelstein Y, Nelson CA, Vogel-Farley V, DeGregorio G, Holm IA, Khatwaj U, Kapura K, Alexanderi ME, Finnegana DM, Cantwella NG, Walcoa AC, Rappaportg L, Gregasa M, Fichorovam RN, Shannonf MW, Surn M, Kaufmanna WE (2014) Safety, pharmacokinetics, and preliminary assessment of efficacy of mecasermin (recombinant human IGF-1) for the treatment of Rett syndrome. Proceedings of the National Academy of Sciences 111:4596-4601.

Kohwi M, Petryniak MA, Long JE, Ekker M, Obata K, Yanagawa Y, Rubenstein JL, Alvarez-Buylla A (2007) A subpopulation of olfactory bulb GABAergic interneurons is derived from Emx1-and Dlx5/6-expressing progenitors. The Journal of neuroscience 27:6878-6891.

Ku T-H, Lee Y-J, Wang S-J, Fan C-H, Tien L-T (2011) Effect of honokiol on activity of GAD65 and GAD67 in the cortex and hippocampus of mice. Phytomedicine 18:1126-1129.

Lang M, Wither RG, Brotchie JM, Wu C, Zhang L, Eubanks JH (2012) Selective preservation of MeCP2 in catecholaminergic cells is sufficient to improve the behavioral phenotype of male and female Mecp2-deficient mice. Human molecular genetics dds433.

Lang M, Wither RG, Colic S, Wu C, Monnier PP, Bardakjian BL, Zhang L, Eubanks JH (2014) Rescue of behavioral and EEG deficits in male and female Mecp2-deficient mice by delayed Mecp2 gene reactivation. Human molecular genetics 23:303-318.

Lawhorn C, Smith DM, Brown LL (2009) Partial ablation of mu-opioid receptor rich striosomes produces deficits on a motor-skill learning task. Neuroscience 163:109-119.

Li W, Pozzo-Miller L (2012) Beyond widespread Mecp2 deletions to model Rett syndrome: conditional spatio-temporal knockout, single-point mutations and transgenic rescue mice. Autism-open access 2012:005.

Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, Fan G, Sun YE (2003) DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302:890-893.

Mellios N, Woodson J, Garcia RI, Crawford B, Sharma J, Sheridan SD, Haggarty SJ, Sur M (2014) β2-Adrenergic receptor agonist ameliorates phenotypes and corrects microRNA-mediated IGF1 deficits in a mouse model of Rett syndrome. Proceedings of the National Academy of Sciences 111:9947-9952.

Monory K, Massa F, Egertová M, Eder M, Blaudzun H, Westenbroek R, Kelsch W, Jacob W, Marsch R, Ekker M, Long J, Rubenstein J, Goebbels S, Nave KA, During M, Klugmann M, Wölfel B, Dodt HU, Zieglgänsberger W, Wotjak CT, Mackie K, Elphick MR, Marsicano G (2006) The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 51:455-466.


Murphy NP, Lam HA, Maidment NT (2001) A comparison of morphine‐induced locomotor activity and mesolimbic dopamine release in C57BL6, 129Sv and DBA2 mice. Journal of neurochemistry 79:626-635.

Nguyen MVC, Felice CA, Du F, Covey MV, Robinson JK, Mandel G, Ballas N (2013) Oligodendrocyte lineage cells contribute unique features to Rett syndrome neuropathology. The Journal of Neuroscience 33:18764-18774.

Nikulina EM, Miczek KA, Hammer RP (2005) Prolonged effects of repeated social defeat stress on mRNA expression and function of μ-opioid receptors in the ventral tegmental area of rats. Neuropsychopharmacology 30:1096-1103.

Ohtsuka N, Tansky MF, Kuang H, Kourrich S, Thomas MJ, Rubenstein JL, Ekker M, Leeman SE, Tsien JZ (2008) Functional disturbances in the striatum by region-specific ablation of NMDA receptors. Proceedings of the National Academy of Sciences 105:12961-12966.

Qiu M-H, Chen MC, Huang Z-L, Lu J (2014) Neuronal activity (c-Fos) delineating interactions of the cerebral cortex and basal ganglia. Frontiers in neuroanatomy 8.

Ricardo Buenaventura M, Rajive Adlaka M, Nalini Sehgal M (2008) Opioid complications and side effects. Pain physician 11:S105-S120.

Ricceri L, De Filippis B, Laviola G (2008) Mouse models of Rett syndrome: from behavioural phenotyping to preclinical evaluation of new therapeutic approaches. Behavioural pharmacology 19:501-517.

Robinson L, Guy J, McKay L, Brockett E, Spike RC, Selfridge J, De Sousa D, Merusi C, Riedel G, Bird A, Cobb SR (2012) Morphological and functional reversal of phenotypes in a mouse model of Rett syndrome. Brain aws096.

Samaco RC, Fryer JD, Ren J, Fyffe S, Chao H-T, Sun Y, Greer JJ, Zoghbi HY, Neul JL (2008) A partial loss of function allele of methyl-CpG-binding protein 2 predicts a human neurodevelopmental syndrome. Human molecular genetics 17:1718-1727.

Samaco RC, Hogart A, LaSalle JM (2005) Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Human molecular genetics 14:483-492.

Samaco RC, Mandel-Brehm C, Chao H-T, Ward CS, Fyffe-Maricich SL, Ren J, Hyland K, Thaller C, Maricich SM, Humphreys P, Greerc J, Percyh A, Glazef DG, Zoghbi HY , Neula JL(2009) Loss of MeCP2 in aminergic neurons causes cell-autonomous defects in neurotransmitter synthesis and specific behavioral abnormalities. Proceedings of the National Academy of Sciences 106:21966-21971.

Shahbazian MD, Antalffy B, Armstrong DL, Zoghbi HY (2002) Insight into Rett syndrome: MeCP2 levels display tissue-and cell-specific differences and correlate with neuronal maturation. Human molecular genetics 11:115-124.

Shin R, Ikemoto S (2010) Administration of the GABAA receptor antagonist picrotoxin into rat supramammillary nucleus induces c-Fos in reward-related brain structures. Supramammillary picrotoxin and c-Fos expression. BMC neuroscience 11:101.

Shrivastava AN, Triller A, Sieghart W (2011) GABAA receptors: post-synaptic co-localization and cross-talk with other receptors. Building up the inhibitory synapse 97.

Stanley JL, Lincoln RJ, Brown TA, McDonald LM, Dawson GR, Reynolds DS (2005) The mouse beam walking assay offers improved sensitivity over the mouse rotarod in determining motor coordination deficits induced by benzodiazepines. Journal of psychopharmacology 19:221-227.

Szczesna K, de la Caridad O, Petazzi P, Soler M, Roa L, Saez MA, Fourcade S, Pujol A, Artuch-Iriberri R, Molero-Luis M, Vidal A, Huertas D, Esteller M (2014) Improvement of the Rett Syndrome Phenotype in a Mecp2 Mouse Model Upon Treatment with Levodopa and a Dopa-Decarboxylase Inhibitor. Neuropsychopharmacology.

Takemura M, Shimada T, Shigenaga Y (2000) GABAA receptor-mediated effects on expression of c-Fos in rat trigeminal nucleus following high-and low-intensity afferent stimulation. Neuroscience 98:325-332.

Theisen JW, Gucwa JS, Yusufzai T, Khuong MT, Kadonaga JT (2013) Biochemical analysis of histone deacetylase-independent transcriptional repression by MeCP2. Journal of Biological Chemistry 288:7096-7104.

Trappe R, Laccone F, Cobilanschi J, Meins M, Huppke P, Hanefeld F, Engel W (2001) < i> MECP2 Mutations in Sporadic Cases of Rett Syndrome Are Almost Exclusively of Paternal Origin. The American Journal of Human Genetics 68:1093-1101.

Trezza V, Damsteegt R, Achterberg EM, Vanderschuren LJ (2011) Nucleus accumbens μ-opioid receptors mediate social reward. The Journal of Neuroscience 31:6362-6370.

van Zessen R, Phillips JL, Budygin EA, Stuber GD (2012) Activation of VTA GABA neurons disrupts reward consumption. Neuron 73:1184-1194.

Ward CS, Arvide EM, Huang T-W, Yoo J, Noebels JL, Neul JL (2011) MeCP2 is critical within HoxB1-derived tissues of mice for normal lifespan. The Journal of Neuroscience 31:10359-10370.

Whistler JL, Chuang H-h, Chu P, Jan LY, von Zastrow M (1999) Functional dissociation of μ opioid receptor signaling and endocytosis: implications for the biology of opiate tolerance and addiction. Neuron 23:737-746.

Xu X, Miller EC, Pozzo-Miller L (2014) Dendritic spine dysgenesis in Rett syndrome. Frontiers in neuroanatomy 8.

Zaugg J, Khom S, Eigenmann D, Baburin I, Hamburger M, Hering S (2011) Identification and characterization of GABAA receptor modulatory diterpenes from Biota orientalis that decrease locomotor activity in mice. Journal of natural products 74:1764-1772.

Zhou Z, Hong EJ, Cohen S, Zhao W-n, Ho H-yH, Schmidt L, Chen WG, Lin Y, Savner E, Griffith EC, Hu L, Steen AJ, Weitz CJ, Greenberg ME (2006) Brain-Specific Phosphorylation of MeCP2 Regulates Activity-Dependent Bdnf Transcription, Dendritic Growth, and Spine Maturation. Neuron 52:255-269.
描述 碩士
國立政治大學
神經科學研究所
101754007
103
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0101754007
資料類型 thesis
dc.contributor.advisor 廖文霖zh_TW
dc.contributor.advisor Liao, Wen Linen_US
dc.contributor.author (Authors) 黃弈博zh_TW
dc.contributor.author (Authors) Huang, Yi Boen_US
dc.creator (作者) 黃弈博zh_TW
dc.creator (作者) Huang, Yi Boen_US
dc.date (日期) 2014en_US
dc.date.accessioned 1-Apr-2015 10:02:46 (UTC+8)-
dc.date.available 1-Apr-2015 10:02:46 (UTC+8)-
dc.date.issued (上傳時間) 1-Apr-2015 10:02:46 (UTC+8)-
dc.identifier (Other Identifiers) G0101754007en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/74246-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 神經科學研究所zh_TW
dc.description (描述) 101754007zh_TW
dc.description (描述) 103zh_TW
dc.description.abstract (摘要) 瑞特氏症 (Rett syndrome, RTT)是由於第二型甲基CpG結合蛋白 (methyl - CpG binding protein 2, MECP2) 基因發生突變所造成的一種神經發育疾病。當小鼠的MeCP2缺失時,會產生許多類似瑞特氏症患者的運動障礙,其中包含運動活力低下、運動協調與運動學習能力缺損,此運動障礙可能由於γ-胺基丁酸(GABA)與多巴胺神經訊號傳遞功能失調所造成。先前研究發現Mecp2基因剔除小鼠的運動障礙伴隨大腦皮質與紋狀體中GABA合成的減少,我們因此嘗試利用藥理的方式增加GABA傳訊,測試其是否可改善Mecp2基因剔除小鼠的運動障礙。我們發現Mecp2基因剔除以及條件缺失公鼠,經由管餵方式給予100 mg/kg厚朴生藥 (cortex Magnoliae)連續七天後,對於平衡桿行走測試以及加速滾輪測試有改善的趨勢,但是對於Mecp2T158A點突變公鼠以及條件缺失母鼠卻沒有效果。我們進而檢測和厚朴酚合成純化物 (以下簡稱MH101)對運動障礙的改善效果。在行為測試前九十分鐘腹腔給予 1 mg/kg的MH101並觀察待測鼠在加速滾輪上的掉落延宕時間, 發現Mecp2條件缺失母鼠在投藥後,與控制組母鼠在同樣藥物處理下相近,顯示MH101有改善運動障礙的效果。以免疫染色法觀察c-Fos蛋白表現量檢測神經細胞的活性,發現在投予MH101後,控制組母鼠的c-Fos蛋白表現量在紋狀體之內背側區有顯著的增加,且Mecp2條件缺失母鼠相對應的腦區也有增加的趨勢,而其他皮質腦區卻皆無明顯改變,其結果顯示內背側紋狀體的活性增加可能與Mecp2條件缺失母鼠的運動協調能力增加有所關聯。另一方面,先前研究指出瑞特氏症模式小鼠的前端紋狀體中,有μ型類鴉片受體表現量減少以及第二型多巴胺受體的過度表現,所以我們嘗試在野生型小鼠的前端紋狀體活化其μ型類鴉片受體或是減少第二型多巴胺受體的神經傳導,檢測是否能夠增加其運動能力。實驗結果顯示,不論是給予μ型類鴉片受體促效劑或是第二型多巴胺受體拮抗劑皆可有效防止手術後之運動活力表現的缺損,因此,於前端紋狀體活化μ型類鴉片受體或阻斷第二型多巴胺受體可能改善小鼠之運動障礙。綜上所述,本研究藉由改善神經傳導的缺失緩解瑞特氏症模式小鼠部份的運動障礙,提供典型瑞特氏症可能有效的治療方式。zh_TW
dc.description.abstract (摘要) Rett Syndrome (RTT) is a neurodevelopmental disorder caused by mutations of the methyl-CpG-binding protein 2 (MECP2). Mice with deficient MeCP2 recapitulate many RTT-like motor symptoms, including hypoactivity, deficits in motor coordination, and motor learning, those are associated with hypofunction of GABAergic and dopaminergic neurotransmission. Previous study found that decreased GABA synthesis in the striatum is accompanied by motor deficits in Mecp2-null mice, here we attempt to examine whether pharmacological interventions by increasing GABA transmission could ameliorate motor deficits in Mecp2 mutant mice. We found that Mecp2-null mice and conditional knockout (cKO) male mice, but not mice carrying Mecp2T158A point mutation and cKO old female mice, administered with the cortex Magnoliae for 7 days via oral gavage at the dose of 100 mg/kg, showed a trend of improvement on open field test, beam walking task or rotarod task. We next tested the therapeutic effects of MH101 (a synthetic analog of honokiol),which is a GABAA receptor agonist derived from the bark of the plant Magnolia officinalis. We found that female cKO mice showed improvement on the rotarod performance after administration of 1 mg/kg MH101 90 mins prior to behavior tests. By examining expression of c-Fos protein, an indicator of neuronal activity, in different cortical and striatal regions with immunohistochemistry, we found that the MH101 treatment increased c-Fos expression in dorsomedial part of the rostral striatum in both control and cKO mice, but without significant alteration in the cortical neuron activity, suggesting that neuronal activity in the dorsomedial part of the rostral striatum may be related to increased motor learning in Mecp2 cKO female mice. On the other hand, the reduced expression of mu opioid receptor 1 and increased dopamine D2 receptor in the rostral striatum of RTT-like mice had been demonstrated in our previous study, we thus try to test whether activation of MOR1 or blockade of DRD2 in the rostral striatum could enhance motor function in wild-type mice. The results indicated that both treatments prevented post-surgery hypoactivity, suggesting that opioid and dopaminergic drugs could be alternative choices for improving motor deficits in RTT-like animal models. Taken together, our findings provide a proof-of-principle for novel pharmacological therapeutics to ameliorate motor deficits in mouse models of typical Rett syndrome.en_US
dc.description.tableofcontents 中文摘要 I
英文摘要 II
目錄 III
表次 V
圖次 VI
縮寫對照表 VII
第一章 緒論 01
第一節 瑞特氏症 (Rett syndrome, RTT) 01
一、症狀 01
二、病源學 01
三、MECP2基因 03
第二節 瑞特氏症模式小鼠 03
一、Mecp2基因剔除小鼠 04
二、Mecp2 點突變小鼠 04
三、Mecp2條件缺失小鼠 04
第三節 瑞特氏症模式小鼠的療癒 05
一、基因治療 05
二、藥物治療 06
第四節 實驗目的與策略 07
第二章 材料與方法 09
第一節 實驗藥物……...………………………………………………………….……..09
一、厚朴生藥與和厚朴酚合成純化物 09
二、DAMGO與Raclopride 09
第二節 實驗動物 …….………………………………………………………………..09
第三節 基因轉殖鼠之基因型鑑定 .……………………………………………..10
一、基因組去氧核醣核酸 (Genomic DNA)之萃取 10
二、聚合酶鏈鎖反應 (polymerase chain reaction, PCR) 10
第四節 小鼠行為測試 ……..……………………………………………………… 12
一、敞箱測試 (open field test, OFT) 12
二、平衡桿行走測試 (beam walking test, BWT) 12
三、加速滾輪測試 (accelerating rotarod, RTR) 12
四、行為實驗之統計分析 13
第五節 腦部藥物注射之立體定位手術 ……..……………………………………… 13
第六節免疫組織染色 ……..………..………………………………………………… 13
一、腦組織的灌流固定與切片 13
二、免疫組織染色 14
三、cFos細胞計數定量分析 14
第三章 結果 16
第一節 厚朴生藥對Mecp2基因剔除公鼠運動障礙之影響 ……..………………..16
第二節 厚朴生藥對Mecp2點突變公鼠運動障礙之影響……..……………………..20
第三節 厚朴生藥對Mecp2條件缺失公鼠運動障礙之影響 ……………………….24
第四節 厚朴生藥對Mecp2條件缺失母鼠運動障礙之影響 .…………………..28
第五節 和厚朴酚合成純化物對Mecp2點突變公鼠運動障礙之影響 .………..32
第六節 和厚朴酚合成純化物對Mecp2條件缺失母鼠運動障礙之影響 .……..35
第七節 和厚朴酚合成純化物對Mecp2條件缺失母鼠腦中神經活性的影響 ...38
第八節 μ型類鴉片受體促效劑在前端紋狀體對於運動表現的影響 .....…..41
第九節 第二型多巴胺受體拮抗劑在前端紋狀體對於運動表現的影響 ..…...44
第四章 討論 47
第一節 瑞特氏症模式小鼠表現運動活力低下與運動協調能力缺失 ………...…..47
第二節 厚朴生藥對不同瑞特氏症模式小鼠產生不同影響.…………………………..47
第三節 和厚朴酚合成純化物對於不同腦區的神經細胞活性的影響..……………….49
第四節 紋狀體前端活化μ型類鴉片受體促效劑對於運動表現的影響.………..…....50
第五節 紋狀體前端抑制第二型多巴胺受體拮抗劑對於運動表現的影響..........…....51
第六節 瑞特氏症模式小鼠運動障礙之療癒.………………………....………………..52
第七節 本篇研究重要性………..………………………………………………….……52
第五章 結論 54
參考文獻 56
附錄 VIII
zh_TW
dc.format.extent 3462851 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0101754007en_US
dc.subject (關鍵詞) 瑞特氏症zh_TW
dc.subject (關鍵詞) 第二型甲基CpG結合蛋白zh_TW
dc.subject (關鍵詞) 紋狀體zh_TW
dc.subject (關鍵詞) γ-胺基丁酸zh_TW
dc.subject (關鍵詞) 厚朴生藥zh_TW
dc.subject (關鍵詞) 和厚朴酚合成純化物zh_TW
dc.subject (關鍵詞) Rett syndromeen_US
dc.subject (關鍵詞) Mecp2en_US
dc.subject (關鍵詞) Striatumen_US
dc.subject (關鍵詞) GABAen_US
dc.subject (關鍵詞) cortex Magnoliaeen_US
dc.subject (關鍵詞) MH101en_US
dc.title (題名) 以典型瑞特氏症模式小鼠研究運動障礙之療癒zh_TW
dc.title (題名) In search of interventions to ameliorate motor deficits in mouse models of typical Rett syndromeen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) Abdala AP, Dutschmann M, Bissonnette JM, Paton JF (2010) Correction of respiratory disorders in a mouse model of Rett syndrome. Proceedings of the National Academy of Sciences 107:18208-18213.

Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature genetics 23:185-188.

Briggs A (2013) Primary care of a child with Rett syndrome. Journal of the American Association of Nurse Practitioners.

Castro J, Garcia RI, Kwok S, Banerjee A, Petravicz J, Woodson J, Mellios N, Tropea D, Sur M (2014) Functional recovery with recombinant human IGF1 treatment in a mouse model of Rett Syndrome. Proceedings of the National Academy of Sciences 111:9941-9946.

Cazorla M, de Carvalho FD, Chohan MO, Shegda M, Chuhma N, Rayport S, Ahmari SE, Moore H, Kellendonk C (2014) Dopamine d2 receptors regulate the anatomical and functional balance of Basal Ganglia circuitry. Neuron 81:153-164.

Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, Zoghbi HY (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320:1224-1229.

Chahrour M, Zoghbi HY (2007) The story of Rett syndrome: from clinic to neurobiology. Neuron 56:422-437.

Chao H-T, Chen H, Samaco RC, Xue M, Chahrour M, Yoo J, Neul JL, Gong S, Lu H-C, Heintz N, Ekker M, Rubenstein LR, Noebel JL, Rosenmund C, Zoghbi HY (2010) Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468:263-269.

Chao H-T, Zoghbi HY (2012) MeCP2: only 100% will do. Nature neuroscience 15:176-177.

Chen WG, Chang Q, Lin Y, Meissner A, West AE, Griffith EC, Jaenisch R, Greenberg ME (2003) Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302:885-889.

Chen RZ, Akbarian S, Tudor M, Jaenisch R (2001) Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nature genetics 27:327-331.

Choi WY, Morvan C, Balsam PD, Horvitz JC (2009) Dopamine D1 and D2 antagonist effects on response likelihood and duration. Behavioral neuroscience 123:1279.

Colvin L, Leonard H, De Klerk N, Davis M, Weaving L, Williamson S, Christodoulou J (2004) Refining the phenotype of common mutations in Rett syndrome. Journal of medical genetics 41:25-30.

Costa RM, Cohen D, Nicolelis MA (2004) Differential corticostriatal plasticity during fast and slow motor skill learning in mice. Current Biology 14:1124-1134.

Damen D, Heumann R (2013) MeCP2 phosphorylation in the brain: from transcription to behavior. Biological chemistry 394:1595-1605.

Dehorter N, Guigoni C, Lopez C, Hirsch J, Eusebio A, Ben-Ari Y, Hammond C (2009) Dopamine-deprived striatal GABAergic interneurons burst and generate repetitive gigantic IPSCs in medium spiny neurons. The Journal of Neuroscience 29:7776-7787.

Deogracias R, Yazdani M, Dekkers MP, Guy J, Ionescu MCS, Vogt KE, Barde Y-A (2012) Fingolimod, a sphingosine-1 phosphate receptor modulator, increases BDNF levels and improves symptoms of a mouse model of Rett syndrome. Proceedings of the National Academy of Sciences 109:14230-14235.

Durieux PF, Schiffmann SN, de Kerchove d’Exaerde A (2011) Targeting neuronal populations of the striatum. Frontiers in neuroanatomy 5.

El-Khoury R, Panayotis N, Matagne V, Ghata A, Villard L, Roux J-C (2014) GABA and Glutamate Pathways Are Spatially and Developmentally Affected in the Brain of Mecp2-Deficient Mice. PloS one 9:e92169.

Fried LE, Arbiser JL (2009) Honokiol, a multifunctional antiangiogenic and antitumor agent. Antioxidants & redox signaling 11:1139-1148.

Fyffe SL, Neul JL, Samaco RC, Chao H-T, Ben-Shachar S, Moretti P, McGill BE, Goulding EH, Sullivan E, Tecott LH, Zoghbi HY (2008) Deletion of Mecp2 in Sim1-Expressing Neurons Reveals a Critical Role for MeCP2 in Feeding Behavior, Aggression, and the Response to Stress. Neuron 59:947-958.

Gantz SC, Ford CP, Neve KA, Williams JT (2011) Loss of Mecp2 in substantia nigra dopamine neurons compromises the nigrostriatal pathway. The Journal of Neuroscience 31:12629-12637.

Garg SK, Lioy DT, Cheval H, McGann JC, Bissonnette JM, Murtha MJ, Foust KD, Kaspar BK, Bird A, Mandel G (2013) Systemic delivery of MeCP2 rescues behavioral and cellular deficits in female mouse models of Rett syndrome. The Journal of Neuroscience 33:13612-13620.

Gemelli T, Berton O, Nelson ED, Perrotti LI, Jaenisch R, Monteggia LM (2006) Postnatal loss of methyl-CpG binding protein 2 in the forebrain is sufficient to mediate behavioral aspects of Rett syndrome in mice. Biological psychiatry 59:468-476.

Goffin D, Allen M, Zhang L, Amorim M, Wang I-TJ, Reyes A-RS, Mercado-Berton A, Ong C, Cohen S, Hu L, Blendy JA, Carlson GC, Siegel SJ, Greenberg ME, Zhou Z (2012) Rett syndrome mutation MeCP2 T158A disrupts DNA binding, protein stability and ERP responses. Nature neuroscience 15:274-283.

Gonchar Y, Burkhalter A (1997) Three distinct families of GABAergic neurons in rat visual cortex. Cerebral Cortex 7:347-358.

Groenewegen HJ (2003) The basal ganglia and motor control. Neural plasticity 10:107-120.

Guy J, Gan J, Selfridge J, Cobb S, Bird A (2007) Reversal of neurological defects in a mouse model of Rett syndrome. Science 315:1143-1147.

Guy J, Hendrich B, Holmes M, Martin JE, Bird A (2001) A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nature genetics 27:322-326.

Hagberg B (2002) Clinical manifestations and stages of Rett syndrome. Mental retardation and developmental disabilities research reviews 8:61-65.

Kao F-C, Su S-H, Carlson GC, Liao W (2013) MeCP2-mediated alterations of striatal features accompany psychomotor deficits in a mouse model of Rett syndrome. Brain Structure and Function 1-16.

Khwaja OS, Ho E, Barnes KV, O’Leary HM, Pereira LM, Finkelstein Y, Nelson CA, Vogel-Farley V, DeGregorio G, Holm IA, Khatwaj U, Kapura K, Alexanderi ME, Finnegana DM, Cantwella NG, Walcoa AC, Rappaportg L, Gregasa M, Fichorovam RN, Shannonf MW, Surn M, Kaufmanna WE (2014) Safety, pharmacokinetics, and preliminary assessment of efficacy of mecasermin (recombinant human IGF-1) for the treatment of Rett syndrome. Proceedings of the National Academy of Sciences 111:4596-4601.

Kohwi M, Petryniak MA, Long JE, Ekker M, Obata K, Yanagawa Y, Rubenstein JL, Alvarez-Buylla A (2007) A subpopulation of olfactory bulb GABAergic interneurons is derived from Emx1-and Dlx5/6-expressing progenitors. The Journal of neuroscience 27:6878-6891.

Ku T-H, Lee Y-J, Wang S-J, Fan C-H, Tien L-T (2011) Effect of honokiol on activity of GAD65 and GAD67 in the cortex and hippocampus of mice. Phytomedicine 18:1126-1129.

Lang M, Wither RG, Brotchie JM, Wu C, Zhang L, Eubanks JH (2012) Selective preservation of MeCP2 in catecholaminergic cells is sufficient to improve the behavioral phenotype of male and female Mecp2-deficient mice. Human molecular genetics dds433.

Lang M, Wither RG, Colic S, Wu C, Monnier PP, Bardakjian BL, Zhang L, Eubanks JH (2014) Rescue of behavioral and EEG deficits in male and female Mecp2-deficient mice by delayed Mecp2 gene reactivation. Human molecular genetics 23:303-318.

Lawhorn C, Smith DM, Brown LL (2009) Partial ablation of mu-opioid receptor rich striosomes produces deficits on a motor-skill learning task. Neuroscience 163:109-119.

Li W, Pozzo-Miller L (2012) Beyond widespread Mecp2 deletions to model Rett syndrome: conditional spatio-temporal knockout, single-point mutations and transgenic rescue mice. Autism-open access 2012:005.

Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, Fan G, Sun YE (2003) DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302:890-893.

Mellios N, Woodson J, Garcia RI, Crawford B, Sharma J, Sheridan SD, Haggarty SJ, Sur M (2014) β2-Adrenergic receptor agonist ameliorates phenotypes and corrects microRNA-mediated IGF1 deficits in a mouse model of Rett syndrome. Proceedings of the National Academy of Sciences 111:9947-9952.

Monory K, Massa F, Egertová M, Eder M, Blaudzun H, Westenbroek R, Kelsch W, Jacob W, Marsch R, Ekker M, Long J, Rubenstein J, Goebbels S, Nave KA, During M, Klugmann M, Wölfel B, Dodt HU, Zieglgänsberger W, Wotjak CT, Mackie K, Elphick MR, Marsicano G (2006) The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 51:455-466.


Murphy NP, Lam HA, Maidment NT (2001) A comparison of morphine‐induced locomotor activity and mesolimbic dopamine release in C57BL6, 129Sv and DBA2 mice. Journal of neurochemistry 79:626-635.

Nguyen MVC, Felice CA, Du F, Covey MV, Robinson JK, Mandel G, Ballas N (2013) Oligodendrocyte lineage cells contribute unique features to Rett syndrome neuropathology. The Journal of Neuroscience 33:18764-18774.

Nikulina EM, Miczek KA, Hammer RP (2005) Prolonged effects of repeated social defeat stress on mRNA expression and function of μ-opioid receptors in the ventral tegmental area of rats. Neuropsychopharmacology 30:1096-1103.

Ohtsuka N, Tansky MF, Kuang H, Kourrich S, Thomas MJ, Rubenstein JL, Ekker M, Leeman SE, Tsien JZ (2008) Functional disturbances in the striatum by region-specific ablation of NMDA receptors. Proceedings of the National Academy of Sciences 105:12961-12966.

Qiu M-H, Chen MC, Huang Z-L, Lu J (2014) Neuronal activity (c-Fos) delineating interactions of the cerebral cortex and basal ganglia. Frontiers in neuroanatomy 8.

Ricardo Buenaventura M, Rajive Adlaka M, Nalini Sehgal M (2008) Opioid complications and side effects. Pain physician 11:S105-S120.

Ricceri L, De Filippis B, Laviola G (2008) Mouse models of Rett syndrome: from behavioural phenotyping to preclinical evaluation of new therapeutic approaches. Behavioural pharmacology 19:501-517.

Robinson L, Guy J, McKay L, Brockett E, Spike RC, Selfridge J, De Sousa D, Merusi C, Riedel G, Bird A, Cobb SR (2012) Morphological and functional reversal of phenotypes in a mouse model of Rett syndrome. Brain aws096.

Samaco RC, Fryer JD, Ren J, Fyffe S, Chao H-T, Sun Y, Greer JJ, Zoghbi HY, Neul JL (2008) A partial loss of function allele of methyl-CpG-binding protein 2 predicts a human neurodevelopmental syndrome. Human molecular genetics 17:1718-1727.

Samaco RC, Hogart A, LaSalle JM (2005) Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Human molecular genetics 14:483-492.

Samaco RC, Mandel-Brehm C, Chao H-T, Ward CS, Fyffe-Maricich SL, Ren J, Hyland K, Thaller C, Maricich SM, Humphreys P, Greerc J, Percyh A, Glazef DG, Zoghbi HY , Neula JL(2009) Loss of MeCP2 in aminergic neurons causes cell-autonomous defects in neurotransmitter synthesis and specific behavioral abnormalities. Proceedings of the National Academy of Sciences 106:21966-21971.

Shahbazian MD, Antalffy B, Armstrong DL, Zoghbi HY (2002) Insight into Rett syndrome: MeCP2 levels display tissue-and cell-specific differences and correlate with neuronal maturation. Human molecular genetics 11:115-124.

Shin R, Ikemoto S (2010) Administration of the GABAA receptor antagonist picrotoxin into rat supramammillary nucleus induces c-Fos in reward-related brain structures. Supramammillary picrotoxin and c-Fos expression. BMC neuroscience 11:101.

Shrivastava AN, Triller A, Sieghart W (2011) GABAA receptors: post-synaptic co-localization and cross-talk with other receptors. Building up the inhibitory synapse 97.

Stanley JL, Lincoln RJ, Brown TA, McDonald LM, Dawson GR, Reynolds DS (2005) The mouse beam walking assay offers improved sensitivity over the mouse rotarod in determining motor coordination deficits induced by benzodiazepines. Journal of psychopharmacology 19:221-227.

Szczesna K, de la Caridad O, Petazzi P, Soler M, Roa L, Saez MA, Fourcade S, Pujol A, Artuch-Iriberri R, Molero-Luis M, Vidal A, Huertas D, Esteller M (2014) Improvement of the Rett Syndrome Phenotype in a Mecp2 Mouse Model Upon Treatment with Levodopa and a Dopa-Decarboxylase Inhibitor. Neuropsychopharmacology.

Takemura M, Shimada T, Shigenaga Y (2000) GABAA receptor-mediated effects on expression of c-Fos in rat trigeminal nucleus following high-and low-intensity afferent stimulation. Neuroscience 98:325-332.

Theisen JW, Gucwa JS, Yusufzai T, Khuong MT, Kadonaga JT (2013) Biochemical analysis of histone deacetylase-independent transcriptional repression by MeCP2. Journal of Biological Chemistry 288:7096-7104.

Trappe R, Laccone F, Cobilanschi J, Meins M, Huppke P, Hanefeld F, Engel W (2001) < i> MECP2 Mutations in Sporadic Cases of Rett Syndrome Are Almost Exclusively of Paternal Origin. The American Journal of Human Genetics 68:1093-1101.

Trezza V, Damsteegt R, Achterberg EM, Vanderschuren LJ (2011) Nucleus accumbens μ-opioid receptors mediate social reward. The Journal of Neuroscience 31:6362-6370.

van Zessen R, Phillips JL, Budygin EA, Stuber GD (2012) Activation of VTA GABA neurons disrupts reward consumption. Neuron 73:1184-1194.

Ward CS, Arvide EM, Huang T-W, Yoo J, Noebels JL, Neul JL (2011) MeCP2 is critical within HoxB1-derived tissues of mice for normal lifespan. The Journal of Neuroscience 31:10359-10370.

Whistler JL, Chuang H-h, Chu P, Jan LY, von Zastrow M (1999) Functional dissociation of μ opioid receptor signaling and endocytosis: implications for the biology of opiate tolerance and addiction. Neuron 23:737-746.

Xu X, Miller EC, Pozzo-Miller L (2014) Dendritic spine dysgenesis in Rett syndrome. Frontiers in neuroanatomy 8.

Zaugg J, Khom S, Eigenmann D, Baburin I, Hamburger M, Hering S (2011) Identification and characterization of GABAA receptor modulatory diterpenes from Biota orientalis that decrease locomotor activity in mice. Journal of natural products 74:1764-1772.

Zhou Z, Hong EJ, Cohen S, Zhao W-n, Ho H-yH, Schmidt L, Chen WG, Lin Y, Savner E, Griffith EC, Hu L, Steen AJ, Weitz CJ, Greenberg ME (2006) Brain-Specific Phosphorylation of MeCP2 Regulates Activity-Dependent Bdnf Transcription, Dendritic Growth, and Spine Maturation. Neuron 52:255-269.
zh_TW