學術產出-Periodical Articles

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

題名 A merging method for the siphon-based FMS maximally permissive controllers with simpler structures
作者 Liu, G.Y.;Chao, Daniel Yuh;Uzam, M.
趙玉
貢獻者 資管系
關鍵詞 Integer programming; Manufacture; Petri nets; Siphons; Computation burden; Deadlock; Deadlock prevention; Linear integer programming; Optimal controller; Permissive controllers; Reachability analysis; Sequential process; Flexible manufacturing systems
日期 2013-01
上傳時間 21-May-2015 17:31:43 (UTC+8)
摘要 It has been a hot race to design optimal controllers to be maximally permissive with fewest monitors in the shortest amount of time for flexible manufacturing systems modelled by Petri nets. Recent maximally permissive deadlock prevention controls for systems of simple sequential processes with resources reduce the computation burden by considering only a small portion of all forbidding markings and employ much fewer monitors by a linear integer programming method. Maximal permissiveness is ensured by not forbidding any live state. However, it still requires costly reachability analysis. Our previous work avoids reachability analysis by classifying siphons and adding monitors to critical siphons only. However, some live states may get lost and the number of monitors required is as many as that of critical siphons. This paper proposes a method to merge several monitors into a single one while not losing the live states. It achieves the same best results in the existing literature while avoiding the time-consuming reachability analysis which does not scale well with the large size of the nets.
關聯 IMA Journal of Mathematical Control and Information, 31(4), 551-573
資料類型 article
DOI http://dx.doi.org/10.1093/imamci/dnt029
dc.contributor 資管系
dc.creator (作者) Liu, G.Y.;Chao, Daniel Yuh;Uzam, M.
dc.creator (作者) 趙玉zh_TW
dc.date (日期) 2013-01
dc.date.accessioned 21-May-2015 17:31:43 (UTC+8)-
dc.date.available 21-May-2015 17:31:43 (UTC+8)-
dc.date.issued (上傳時間) 21-May-2015 17:31:43 (UTC+8)-
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/75287-
dc.description.abstract (摘要) It has been a hot race to design optimal controllers to be maximally permissive with fewest monitors in the shortest amount of time for flexible manufacturing systems modelled by Petri nets. Recent maximally permissive deadlock prevention controls for systems of simple sequential processes with resources reduce the computation burden by considering only a small portion of all forbidding markings and employ much fewer monitors by a linear integer programming method. Maximal permissiveness is ensured by not forbidding any live state. However, it still requires costly reachability analysis. Our previous work avoids reachability analysis by classifying siphons and adding monitors to critical siphons only. However, some live states may get lost and the number of monitors required is as many as that of critical siphons. This paper proposes a method to merge several monitors into a single one while not losing the live states. It achieves the same best results in the existing literature while avoiding the time-consuming reachability analysis which does not scale well with the large size of the nets.
dc.format.extent 176 bytes-
dc.format.mimetype text/html-
dc.relation (關聯) IMA Journal of Mathematical Control and Information, 31(4), 551-573
dc.subject (關鍵詞) Integer programming; Manufacture; Petri nets; Siphons; Computation burden; Deadlock; Deadlock prevention; Linear integer programming; Optimal controller; Permissive controllers; Reachability analysis; Sequential process; Flexible manufacturing systems
dc.title (題名) A merging method for the siphon-based FMS maximally permissive controllers with simpler structures
dc.type (資料類型) articleen
dc.identifier.doi (DOI) 10.1093/imamci/dnt029
dc.doi.uri (DOI) http://dx.doi.org/10.1093/imamci/dnt029