Publications-Periodical Articles

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 Bayesian confidence intervals for probability of default and asset correlation of portfolio credit risk
作者 Chang, Y.-P.;Yu, Chih-Tun
游智惇
貢獻者 統計系
關鍵詞 Asset correlation; Bayesian confidence intervals; MCMC; Portfolio credit risk; Probability of default; Serial dependence
日期 2014-02
上傳時間 3-Jun-2015 11:17:01 (UTC+8)
摘要 We derive Bayesian confidence intervals for the probability of default (PD), asset correlation (Rho), and serial dependence (Theta) for low default portfolios (LDPs). The goal is to reduce the probability of underestimating credit risk in LDPs. We adopt a generalized method of moments with continuous updating to estimate prior distributions for PD and Rho from historical default data. The method is based on a Bayesian approach without expert opinions. A Markov chain Monte Carlo technique, namely, the Gibbs sampler, is also applied. The performance of the estimation results for LDPs validated by Monte Carlo simulations. Empirical studies on Standard & Poor`s historical default data are also conducted. © 2013 Springer-Verlag Berlin Heidelberg.
關聯 Computational Statistics, 29(1-2), 331-361
資料類型 article
DOI http://dx.doi.org/10.1007/s00180-013-0453-2
dc.contributor 統計系
dc.creator (作者) Chang, Y.-P.;Yu, Chih-Tun
dc.creator (作者) 游智惇zh_TW
dc.date (日期) 2014-02
dc.date.accessioned 3-Jun-2015 11:17:01 (UTC+8)-
dc.date.available 3-Jun-2015 11:17:01 (UTC+8)-
dc.date.issued (上傳時間) 3-Jun-2015 11:17:01 (UTC+8)-
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/75542-
dc.description.abstract (摘要) We derive Bayesian confidence intervals for the probability of default (PD), asset correlation (Rho), and serial dependence (Theta) for low default portfolios (LDPs). The goal is to reduce the probability of underestimating credit risk in LDPs. We adopt a generalized method of moments with continuous updating to estimate prior distributions for PD and Rho from historical default data. The method is based on a Bayesian approach without expert opinions. A Markov chain Monte Carlo technique, namely, the Gibbs sampler, is also applied. The performance of the estimation results for LDPs validated by Monte Carlo simulations. Empirical studies on Standard & Poor`s historical default data are also conducted. © 2013 Springer-Verlag Berlin Heidelberg.
dc.format.extent 955564 bytes-
dc.format.mimetype application/pdf-
dc.relation (關聯) Computational Statistics, 29(1-2), 331-361
dc.subject (關鍵詞) Asset correlation; Bayesian confidence intervals; MCMC; Portfolio credit risk; Probability of default; Serial dependence
dc.title (題名) Bayesian confidence intervals for probability of default and asset correlation of portfolio credit risk
dc.type (資料類型) articleen
dc.identifier.doi (DOI) 10.1007/s00180-013-0453-2
dc.doi.uri (DOI) http://dx.doi.org/10.1007/s00180-013-0453-2