學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

  • No doi shows Citation Infomation
題名 新穎微小磁盤結構中渦漩核心受微波激發鐵磁共振之研究
Experimental and Simulation Study on Microwave Excited Ferromagnetic Resonance of Vortex Core in Novel Magnetic Disk Structures
作者 鄧景華
貢獻者 李尚凡
Lee, Shang Fan
鄧景華
關鍵詞 渦漩核心
鐵磁共振
磁盤
Vortex Core
Ferromagnetic Resonance
Magnetic
日期 2015
上傳時間 3-Aug-2015 13:31:17 (UTC+8)
摘要 本論文分為三部分,第一部分探討垂直方向微波進入微米三層膜結構磁盤中渦漩態和其他暫穩態耦合鐵磁共振激發,以往文獻中指出高頻率(GHz)在垂直方向會誘發微小磁盤中渦漩核心產生激發,但因垂直方向磁矩變化量相對整體磁矩的值較小,在實驗上不易測量。本實驗我們利用微小磁盤的三層膜結構鎳鐵/銅/鎳鐵(Py/Cu/Py)來探討渦漩態和其他亞穩態耦合鐵磁共振,在其他亞穩態的幫助下,我們可以更容易量測到垂直方向微波激發渦漩核心的間接訊號,並且使用OOMMF磁性材料模擬軟體來模擬各種亞穩態和渦漩核心耦合的情形。
第二部分,為利用形狀異相性(Shape anisotropy)製作「凸字形」的同心圓磁盤,使渦漩態中渦漩核心周圍磁矩的垂直分量增加,並探討渦漩核心移動時的磁阻變化。利用OOMMF磁性材料模擬軟體,模擬中我們可以看到渦漩核心受到垂直方向的微波激發除了上下震盪之外,還誘導出了水平方向渦漩核心的螺旋形移動。實驗中量出磁盤的異向性磁阻,搭配利用高頻訊號產生器給予磁盤垂直方向微波測量,我們利用這些量測解釋渦漩核心運動情形,驗證渦漩核心受到垂直方向激發之後會產生水平方向的移動。
第三部分,利用OOMMF發現到在垂直異相性(Perpendicular Magnetic Anisotropy)的磁盤薄膜中,利用水平方向的變頻微波擾動,可以使原本垂直異相性的薄膜變成Skyrmion態。在現有的文獻之中,除了晶格異相性(Magnetocrystalline anisotropy)可以產生Skyrmion態,人造的部分一直遲遲未找到。因此我們製作了Pd/Co多層膜製作自旋閥的結構,對於未來製作出人造的Skyrmion有很好的開始。
We report experimental detection of the behaviors of magnetic vortex cores using out-of-plane (electro)-magnetic fields that oscillates at the eigenfrequencies of novel permalloy magnetic disk structures.
First, We study interlayer-coupled magnetic vortex core and different stable excitation states in resonant perpendicular magnetic field of permalloy(Py)/Cu/Py trilayer disks. The samples are Ta(10)/Py(10)/Cu(3)/Py(25) (thickness in nm) disks of 2μm diameter, patterned via electron-beam lithography. When the samples are located in the gap of ground-signal-ground (GSG) coplanar waveguide, a high-frequency out-of-plane magnetic field (H_r ) is generated by a radio frequency signal generator. When the samples are located on the signal line of the GSG waveguide, in-plane resonant fields (H_t) is applied transversely. We show that by using a sequence of H_t and H_r, different ferromagnetic (FM) layer resonant states can be controlled in a systematic way. We observed several peaks between 5 GHz and 7 GHz, which were sensitive to the field.
Secondly, we study the vortex core excitation of out-of-plane precession motion accompanied with in-plane precession induced by shape anisotropy in resonant perpendicular magnetic field of two-magnetic-disk structures. The samples are Py(10)/Py(40) disks of 1μm/2μm diameter, patterned via electron-beam lithography. We show that by using a sequence of H_t and H_r, the vortex core is excited into in-plane precession motion after out-of-plane precession in resonant perpendicular magnetic. We observed a peaks near 7 GHz, which were different from different position and out-of-plane resonant field intensity.
Lastly, we created skyrmion state by micromagnetic simulation using an in-plane frequency conversion (0Ghz~50GHz) in perpendicular magnetic anisotropy (PMA) materials. In the future, we can use Giant Magnetoresistance (GMR) in spin valve structures to detect the formation of skyrmions experimentally.
參考文獻 [1] P. F. Garcia, A. D. Meinhaldt, and A. Suna, Appl. Phys. Lett. 47, 178 (1985).
[2] F. J. A. den Broeder, V. Hoving, and P. J. H. Bloemen, J. Magn. Magn. Mater. 93, 562 (1991).
[3] N. W. E. McGee, M. T. Johnson, J. J. de Vries, and J. ann de Stegge, J. Appl. Phys. 73, 3418 (1993).
[4] C.-J. Lin, G. L. Gorman, C. H. Lee, R. F. C. Farrow, E. E. Marinero, H. V Do, H. Notarys, and C. J. Chien, J. Magn. Magn. Mater. 93, 194 (1991).
[5] G. H. O. Daalderop, P. J. Kelly, and F. J. den Broeder, Phys. Rev. Lett. 68, 682 (1992).
[6] S. Chikazumi, Physics of Ferromagnetism, Clarendon Press, 1997.
[7] Massimiliano d’Aquino, Nonlinear Magnetization Dynamics in Thin-film and Nanoparticles, Ph.D. thesis, Naples Italy: University of Naples Federico II, 2004.
[8] D. Houssameddine, U. Ebels, B. Delaet, B. Rodmacq, I. Firastrau, F. Ponthenier, M. Brunet, C. Thirion, J.-P. Michel, L. Prejbeanu-Buda, M. C. Cyrille, O. Redon, and B. Dieny, Nat. Mater. 6, 447 (2007).
[9] J. H. Chang, H. H. Chen, and C. R. Chang, Phys. Rev. B 83, 054425 (2011).
[10] J. Nickel. (1995), Magnetoresistance Overview
[11] Wren, T. and Kazakova, O., Journal of Applied Physics, 117, 17E134 (2015)
[12] Cui, Xiaomin and Hu, Shaojie and Kimura, Takashi, Applied Physics Letters, 105, 082403 (2014)
[13] Guslienko, K. Yu. and Ivanov, B. A. and Novosad, V. and Otani, Y. and Shima, H. and Fukamichi, K., Journal of Applied Physics, 91, 8037-8039 (2002)
[14] Lim, W. L. and Liu, R. H. and Tyliszczak, T. and Erokhin, S. G. and Berkov, D. and Urazhdin, S., Applied Physics Letters, 105, 222405 (2014)
[15] Stebliy, Maxim E. and Ognev, Alexey V. and Samardak, Alexander S. and Kolesnikov, Alexander G. and Chebotkevich, Ludmila A. and Han, Xiufeng, Applied Physics Letters, 104, 112405 (2014)
[16] Helsen, M. and Gangwar, A. and De Clercq, J. and Vansteenkiste, A. and Weigand, M. and Back, C. H. and Van Waeyenberge, B., Applied Physics Letters, 106, 032405 (2015)
[17] Wang, Ruifang and Dong, Xinwei, Applied Physics Letters, 100, 082402 (2012)
[18] Haldar, Arabinda and Adeyeye, A. O., Applied Physics Letters, 106, 032404 (2015)
[19] Saitoh, E. and Ueda, M. and Miyajima, H. and Tatara, G., Applied Physics Letters, 88, 182509 (2006)
[20] Pulecio, J. F. et al. Coherence and modality of driven interlayer-coupled magnetic vortices. Nat. Commun. 5:3760 doi: 10.1038/ncomms4760 (2014)
[21] Dussaux, A. et al. Large microwave generation from current-driven magnetic vortex oscillators in magnetic tunnel junctions. Nat. Commun. 1:8 doi: 10.1038/ncomms1006 (2010)
[22] Sluka, V. et al. Spin-torque-induced dynamics at fine-split frequencies in nano-oscillators with two stacked vortices. Nat. Commun. 6:6409 doi: 10.1038/ncomms7409 (2015)
[23] B. Pigeau, G. de Loubens, O. Klein, A. Riegler, F. Lochner, G. Schmidt, and L. W. Molenkamp, Nat. Phys. 7, 26 (2010)
[24] R. Moriya, L. Thomas, M. Hayashi, Y. B. Bazaliy, C. Rettner, and S. S. Parkin, Nature Mater. 4, 368 (2008)
[25] N. Nagaosa and Y. Tokura, Nat. Nanotechnol. 8, 899 (2013).
[26] B. Krüger, A. Drews, M. Bolte, U. Merkt, D. Pfannkuche, and G. Meier, Phys. Rev. B 76, 224426 (2007)
[27] J. K. Ha, R. Hertel, and J. Kirschner, Phys. Rev. B 67, 224432 (2003)
[28] I. Neudecker et al., Phys. Rev. B 73, 134426 (2006)
[29] Q. Mistral et al., Phys. Rev. Lett. 100, 257201 (2008)
[30] S. Kasai et al., Phys. Rev. Lett. 97, 107204 (2006)
[31] K. Y. Guslienko, K.-S. Lee, and S.-K. Kim, Phys. Rev. Lett. 100, 027203(2008)
[32]NIST OOMMF software v.1.2a4, http://math.nist.gov/oommf/
[33]M. I. Dyakonov and V. I. Perel, JETP 13 467 (1971)
[34]J. E. Hirsch, Phys. Rev. Lett. 83 1834 (1999)
[35]Y. K. Kato et al., Science 306, 1910 (2004)
[36]J.Nickel.(1995),Magnetoresistance Overview [Online], http://www.hpl.hp.com/techreports/95/HPL-95-60.pdf
[37] A. Wachowiak etal., Science 298,577(2002)
[38] S. Sugimoto, Y. Fukuma, S. Kasai, T. Kimura, A. Barman, and Y. C. Otani, Phys. Rev. Lett. 106, 197203 (2011)
[39]http://host.cc.ntu.edu.tw/sec/enews/Effective%20circuit%20for%20spin%20pumping.htm
[40] Stebliy, Maxim E. and Ognev, Alexey V. and Samardak, Alexander S. and Kolesnikov, Alexander G. and Chebotkevich, Ludmila A. and Han, Xiufeng, Applied Physics Letters, 104, 112405 (2014)
[41] Everschor-Sitte, Karin and Sitte, Matthias, Journal of Applied Physics, 115, 172602 (2014)
描述 碩士
國立政治大學
應用物理研究所
102755002
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0102755002
資料類型 thesis
dc.contributor.advisor 李尚凡zh_TW
dc.contributor.advisor Lee, Shang Fanen_US
dc.contributor.author (Authors) 鄧景華zh_TW
dc.creator (作者) 鄧景華zh_TW
dc.date (日期) 2015en_US
dc.date.accessioned 3-Aug-2015 13:31:17 (UTC+8)-
dc.date.available 3-Aug-2015 13:31:17 (UTC+8)-
dc.date.issued (上傳時間) 3-Aug-2015 13:31:17 (UTC+8)-
dc.identifier (Other Identifiers) G0102755002en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/77244-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用物理研究所zh_TW
dc.description (描述) 102755002zh_TW
dc.description.abstract (摘要) 本論文分為三部分,第一部分探討垂直方向微波進入微米三層膜結構磁盤中渦漩態和其他暫穩態耦合鐵磁共振激發,以往文獻中指出高頻率(GHz)在垂直方向會誘發微小磁盤中渦漩核心產生激發,但因垂直方向磁矩變化量相對整體磁矩的值較小,在實驗上不易測量。本實驗我們利用微小磁盤的三層膜結構鎳鐵/銅/鎳鐵(Py/Cu/Py)來探討渦漩態和其他亞穩態耦合鐵磁共振,在其他亞穩態的幫助下,我們可以更容易量測到垂直方向微波激發渦漩核心的間接訊號,並且使用OOMMF磁性材料模擬軟體來模擬各種亞穩態和渦漩核心耦合的情形。
第二部分,為利用形狀異相性(Shape anisotropy)製作「凸字形」的同心圓磁盤,使渦漩態中渦漩核心周圍磁矩的垂直分量增加,並探討渦漩核心移動時的磁阻變化。利用OOMMF磁性材料模擬軟體,模擬中我們可以看到渦漩核心受到垂直方向的微波激發除了上下震盪之外,還誘導出了水平方向渦漩核心的螺旋形移動。實驗中量出磁盤的異向性磁阻,搭配利用高頻訊號產生器給予磁盤垂直方向微波測量,我們利用這些量測解釋渦漩核心運動情形,驗證渦漩核心受到垂直方向激發之後會產生水平方向的移動。
第三部分,利用OOMMF發現到在垂直異相性(Perpendicular Magnetic Anisotropy)的磁盤薄膜中,利用水平方向的變頻微波擾動,可以使原本垂直異相性的薄膜變成Skyrmion態。在現有的文獻之中,除了晶格異相性(Magnetocrystalline anisotropy)可以產生Skyrmion態,人造的部分一直遲遲未找到。因此我們製作了Pd/Co多層膜製作自旋閥的結構,對於未來製作出人造的Skyrmion有很好的開始。
zh_TW
dc.description.abstract (摘要) We report experimental detection of the behaviors of magnetic vortex cores using out-of-plane (electro)-magnetic fields that oscillates at the eigenfrequencies of novel permalloy magnetic disk structures.
First, We study interlayer-coupled magnetic vortex core and different stable excitation states in resonant perpendicular magnetic field of permalloy(Py)/Cu/Py trilayer disks. The samples are Ta(10)/Py(10)/Cu(3)/Py(25) (thickness in nm) disks of 2μm diameter, patterned via electron-beam lithography. When the samples are located in the gap of ground-signal-ground (GSG) coplanar waveguide, a high-frequency out-of-plane magnetic field (H_r ) is generated by a radio frequency signal generator. When the samples are located on the signal line of the GSG waveguide, in-plane resonant fields (H_t) is applied transversely. We show that by using a sequence of H_t and H_r, different ferromagnetic (FM) layer resonant states can be controlled in a systematic way. We observed several peaks between 5 GHz and 7 GHz, which were sensitive to the field.
Secondly, we study the vortex core excitation of out-of-plane precession motion accompanied with in-plane precession induced by shape anisotropy in resonant perpendicular magnetic field of two-magnetic-disk structures. The samples are Py(10)/Py(40) disks of 1μm/2μm diameter, patterned via electron-beam lithography. We show that by using a sequence of H_t and H_r, the vortex core is excited into in-plane precession motion after out-of-plane precession in resonant perpendicular magnetic. We observed a peaks near 7 GHz, which were different from different position and out-of-plane resonant field intensity.
Lastly, we created skyrmion state by micromagnetic simulation using an in-plane frequency conversion (0Ghz~50GHz) in perpendicular magnetic anisotropy (PMA) materials. In the future, we can use Giant Magnetoresistance (GMR) in spin valve structures to detect the formation of skyrmions experimentally.
en_US
dc.description.tableofcontents 誌謝 I
摘要 II
Abstract III
圖目錄 VII
第一章 緒論 1
第二章 磁性基本理論 5
2-1 物質的磁性 5
2-2 磁結構與磁異向性 10
2-3 磁阻 15
2-4 渦漩(Vortex) 16
2-5 Skyrmion 18
2-6自旋霍爾效應(Spin Hall Effect, SHE) 20
2-7反自旋霍爾效應(Inverse Spin Hall Effect, ISHE) 21
第三章 文獻回顧 23
3-1 水平方向渦漩核心激發共振 23
3-2 垂直方向渦漩核心激發共振 26
3-3 三層膜結構磁盤 27
3-4 渦漩核心移動情形之訊號判讀 28
3-5 凸字型結構相關實驗 30
第四章 實驗儀器原理與模擬儀器原理 31
4-1 濺鍍系統(Sputter) 31
4-2 磁阻量測 33
4-3 樣品製作(CIP製程) 34
4-4 三層磁盤量測介紹 36
4-5 凸字磁盤量測介紹 37
4-6 模擬軟體與參數設定 38
第五章 實驗結果與數據分析 39
5-1 三層磁盤量測 39
5-2 三層磁盤磁矩狀態模擬分析與數據討論 49
5-3 凸字磁盤量測 53
5-4 凸字磁矩狀態模擬分析與數據討論 65
5-5 Pd/Co多層膜垂直異向性(PMA)與自旋閥(Spin Valve)裝置量測 74
5-6 Skyrmion模擬產生分析討論與實驗設計 80
第六章 結論 82
附錄 83
參考文獻 85
zh_TW
dc.format.extent 5418031 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0102755002en_US
dc.subject (關鍵詞) 渦漩核心zh_TW
dc.subject (關鍵詞) 鐵磁共振zh_TW
dc.subject (關鍵詞) 磁盤zh_TW
dc.subject (關鍵詞) Vortex Coreen_US
dc.subject (關鍵詞) Ferromagnetic Resonanceen_US
dc.subject (關鍵詞) Magneticen_US
dc.title (題名) 新穎微小磁盤結構中渦漩核心受微波激發鐵磁共振之研究zh_TW
dc.title (題名) Experimental and Simulation Study on Microwave Excited Ferromagnetic Resonance of Vortex Core in Novel Magnetic Disk Structuresen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] P. F. Garcia, A. D. Meinhaldt, and A. Suna, Appl. Phys. Lett. 47, 178 (1985).
[2] F. J. A. den Broeder, V. Hoving, and P. J. H. Bloemen, J. Magn. Magn. Mater. 93, 562 (1991).
[3] N. W. E. McGee, M. T. Johnson, J. J. de Vries, and J. ann de Stegge, J. Appl. Phys. 73, 3418 (1993).
[4] C.-J. Lin, G. L. Gorman, C. H. Lee, R. F. C. Farrow, E. E. Marinero, H. V Do, H. Notarys, and C. J. Chien, J. Magn. Magn. Mater. 93, 194 (1991).
[5] G. H. O. Daalderop, P. J. Kelly, and F. J. den Broeder, Phys. Rev. Lett. 68, 682 (1992).
[6] S. Chikazumi, Physics of Ferromagnetism, Clarendon Press, 1997.
[7] Massimiliano d’Aquino, Nonlinear Magnetization Dynamics in Thin-film and Nanoparticles, Ph.D. thesis, Naples Italy: University of Naples Federico II, 2004.
[8] D. Houssameddine, U. Ebels, B. Delaet, B. Rodmacq, I. Firastrau, F. Ponthenier, M. Brunet, C. Thirion, J.-P. Michel, L. Prejbeanu-Buda, M. C. Cyrille, O. Redon, and B. Dieny, Nat. Mater. 6, 447 (2007).
[9] J. H. Chang, H. H. Chen, and C. R. Chang, Phys. Rev. B 83, 054425 (2011).
[10] J. Nickel. (1995), Magnetoresistance Overview
[11] Wren, T. and Kazakova, O., Journal of Applied Physics, 117, 17E134 (2015)
[12] Cui, Xiaomin and Hu, Shaojie and Kimura, Takashi, Applied Physics Letters, 105, 082403 (2014)
[13] Guslienko, K. Yu. and Ivanov, B. A. and Novosad, V. and Otani, Y. and Shima, H. and Fukamichi, K., Journal of Applied Physics, 91, 8037-8039 (2002)
[14] Lim, W. L. and Liu, R. H. and Tyliszczak, T. and Erokhin, S. G. and Berkov, D. and Urazhdin, S., Applied Physics Letters, 105, 222405 (2014)
[15] Stebliy, Maxim E. and Ognev, Alexey V. and Samardak, Alexander S. and Kolesnikov, Alexander G. and Chebotkevich, Ludmila A. and Han, Xiufeng, Applied Physics Letters, 104, 112405 (2014)
[16] Helsen, M. and Gangwar, A. and De Clercq, J. and Vansteenkiste, A. and Weigand, M. and Back, C. H. and Van Waeyenberge, B., Applied Physics Letters, 106, 032405 (2015)
[17] Wang, Ruifang and Dong, Xinwei, Applied Physics Letters, 100, 082402 (2012)
[18] Haldar, Arabinda and Adeyeye, A. O., Applied Physics Letters, 106, 032404 (2015)
[19] Saitoh, E. and Ueda, M. and Miyajima, H. and Tatara, G., Applied Physics Letters, 88, 182509 (2006)
[20] Pulecio, J. F. et al. Coherence and modality of driven interlayer-coupled magnetic vortices. Nat. Commun. 5:3760 doi: 10.1038/ncomms4760 (2014)
[21] Dussaux, A. et al. Large microwave generation from current-driven magnetic vortex oscillators in magnetic tunnel junctions. Nat. Commun. 1:8 doi: 10.1038/ncomms1006 (2010)
[22] Sluka, V. et al. Spin-torque-induced dynamics at fine-split frequencies in nano-oscillators with two stacked vortices. Nat. Commun. 6:6409 doi: 10.1038/ncomms7409 (2015)
[23] B. Pigeau, G. de Loubens, O. Klein, A. Riegler, F. Lochner, G. Schmidt, and L. W. Molenkamp, Nat. Phys. 7, 26 (2010)
[24] R. Moriya, L. Thomas, M. Hayashi, Y. B. Bazaliy, C. Rettner, and S. S. Parkin, Nature Mater. 4, 368 (2008)
[25] N. Nagaosa and Y. Tokura, Nat. Nanotechnol. 8, 899 (2013).
[26] B. Krüger, A. Drews, M. Bolte, U. Merkt, D. Pfannkuche, and G. Meier, Phys. Rev. B 76, 224426 (2007)
[27] J. K. Ha, R. Hertel, and J. Kirschner, Phys. Rev. B 67, 224432 (2003)
[28] I. Neudecker et al., Phys. Rev. B 73, 134426 (2006)
[29] Q. Mistral et al., Phys. Rev. Lett. 100, 257201 (2008)
[30] S. Kasai et al., Phys. Rev. Lett. 97, 107204 (2006)
[31] K. Y. Guslienko, K.-S. Lee, and S.-K. Kim, Phys. Rev. Lett. 100, 027203(2008)
[32]NIST OOMMF software v.1.2a4, http://math.nist.gov/oommf/
[33]M. I. Dyakonov and V. I. Perel, JETP 13 467 (1971)
[34]J. E. Hirsch, Phys. Rev. Lett. 83 1834 (1999)
[35]Y. K. Kato et al., Science 306, 1910 (2004)
[36]J.Nickel.(1995),Magnetoresistance Overview [Online], http://www.hpl.hp.com/techreports/95/HPL-95-60.pdf
[37] A. Wachowiak etal., Science 298,577(2002)
[38] S. Sugimoto, Y. Fukuma, S. Kasai, T. Kimura, A. Barman, and Y. C. Otani, Phys. Rev. Lett. 106, 197203 (2011)
[39]http://host.cc.ntu.edu.tw/sec/enews/Effective%20circuit%20for%20spin%20pumping.htm
[40] Stebliy, Maxim E. and Ognev, Alexey V. and Samardak, Alexander S. and Kolesnikov, Alexander G. and Chebotkevich, Ludmila A. and Han, Xiufeng, Applied Physics Letters, 104, 112405 (2014)
[41] Everschor-Sitte, Karin and Sitte, Matthias, Journal of Applied Physics, 115, 172602 (2014)
zh_TW