Publications-Theses
Article View/Open
Publication Export
-
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
題名 指數平滑模型應用於來店人數預測之研究
Applications of exponential smoothing to store traffic forecasting作者 施佩吟
Shih, Pei Yin貢獻者 翁久幸<br>莊皓鈞
Weng, Chui Hsing<br>Chuang, Hao Chun
施佩吟
Shih, Pei Yin關鍵詞 指數平滑法
Holt-Winters模型
狀態空間模型
模型之最佳化準則日期 2015 上傳時間 1-Sep-2015 16:09:30 (UTC+8) 摘要 零售業是美國最大的產業之一,近年來科技進步以及網路購物擁有價格優勢、交易方便等優點,未來電子商務將成為主流的銷售形式之一,一般實體零售業者如何因應這股潮流是一大課題。 與本研究有關之美國服飾零售業,實體店家還是占市場的多數,因此,為了提升服飾零售實體店家的競爭優勢,我們預測來店人數,一方面調整人力資源的分配與進貨量,提供顧客優良的服務品質,另一方面視情況提出促銷方案吸引顧客上門,進而提升營運效率。 每年從感恩節到聖誕節這一個月的時間,是關乎全美零售業生存與否的重要時刻,這段時間的銷售額約占全年銷售總額的1/5,也就表示來店人數在這段期間會維持在一定的數值以上甚至達到全年巔峰,而如何不受影響達到精準預測?本研究欲找出指數平滑法中適合的模型精準預測來店人數的資料。 本研究旨在探討指數平滑法與延伸之狀態空間模型,指數平滑法屬於時間序列(Time series)的預測方法,是應用相當廣的一種預測方法,一般由趨勢(Trend)以及季節性(Seasonality)組合而成,而將指數平滑模型加入誤差項以後的狀態空間模型,過去一直沒有一個隨機模型做為架構納入概似估計與預測區間等,近幾年才發展出模型之最佳化準則來估計參數,而本研究想探討哪一個狀態空間模型適用於預測來店人數資料以及狀態空間模型之最佳化準則是否能使預測結果更準確。 本研究之資料為美國時尚精品服飾店2007年營業時間內每小時來店人數,而實證分析後發現Holt-Winters季節性加法模型ETS(A,A,A)蠻適合用來預測來店人數,此外ETS(A,A,A)模型之最佳化準則以AMSE準則與MLE準則表現最佳, MAE準則表現最差。 參考文獻 英文文獻 1. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. in B. N. Petrov and F. Csaki (eds.) Second International Symposium on Information Theory, pp. 267–281. 2. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, Vol. 19, Issue 6, pp. 716–723. 3. Aoki, M., & Havenner, A. (1991). State space modelling of multiple time series. Econometric Reviews, Vol. 10, Issue 1, pp.1–59. 4. Dielman, T. E. (2006). Choosing Smoothing Parameters For Exponential Smoothing: Minimizing Sums Of Squared Versus Sums Of Absolute Errors. Journal of Modern Applied Statistical Methods, Vol. 5, No. 1, pp. 118-129. 5. Gardner, E. S., Jr. (1999). Rule-Based Forecasting vs. Damped-Trend Exponential Smoothing. Management Science, Vol. 45, No. 8, pp. 1169-1176. 6. Gardner, E. S., Jr. (2006). Exponential smoothing: The state of the art—Part II. International Journal of Forecasting, Vol. 22, Issue 4, pp. 637-666. 7. Hyndman, R. J. (2013). Online course on forecasting using R. 8. Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: the forecast package for R. Journal of Statistical Software, Vol. 27, Issue 3, pp. 1-22. 9. Hyndman, R. J., Koehler, A. B., Ord, J. K., & Snyder, R. D. (2008). Forecasting with Exponential Smoothing. Springer Series in Statistics, pp. 9-29. 10. Hyndman, R. J., Koehler, A. B., Snyder, R. D., & Grose, S. (2002). A state space framework for automatic forecasting using exponential smoothing methods. International Journal of Forecasting, Vol.18, Issue 3, pp. 439–454. 11. Kalman, R. E. (1960). A new approach to linear filtering and prediction problem. Journal of Basic Engineering, Vol. 82, Issue 1, pp.35–45. 12. Kalman, R. E., & Bucy, R. S. (1961). New results in linear filtering and prediction theory. Journal of Basic Engineering, Vol. 83, Issue 3, pp.95–108. 13. Lewis, E. B. (1982). Control of body segment differentiation in Drosophila by the bithorax gene complex. Embryonic Development, Part A: Genetics Aspects, Edited by Burger, M. M. and R. Weber. Alan R. Liss, New York, pp. 269-288. 14. Makridakis, S., & Hibon, M. (1991). Exponential smoothing: The effect of initial values and loss functions on post-sample forecasting accuracy. International Journal of Forecasting, Vol. 7, Issue 3, pp. 317– 330. 15. Muth, J. F. (1960). Optimal properties of exponentially weighted forecasts. Journal of the American Statistical Association, Vol. 55, Issue 290, pp.299–306. 16. Ord, J. K., Koehler, A. B., & Snyder, R. D. (1997). Estimation and Prediction for a Class of Dynamic Nonlinear Statistical Models. Journal of the American Statistical Association, Vol. 92, Issue 440, pp.1621-1629. 17. Stock, K. (2014). These retailers need holiday sales to survive. Business Week. 18. Winters, P. R. (1960). Forecasting Sales by Exponentially Weighted Moving Averages. Management Science, 6, pp. 324-342. 中文文獻 1. 黃心惟 (2010) 以數位口碑為基礎之流行性商品銷售預測,國立臺灣大學資訊管理學研究所碩士論文 描述 碩士
國立政治大學
統計研究所
102354021資料來源 http://thesis.lib.nccu.edu.tw/record/#G0102354021 資料類型 thesis dc.contributor.advisor 翁久幸<br>莊皓鈞 zh_TW dc.contributor.advisor Weng, Chui Hsing<br>Chuang, Hao Chun en_US dc.contributor.author (Authors) 施佩吟 zh_TW dc.contributor.author (Authors) Shih, Pei Yin en_US dc.creator (作者) 施佩吟 zh_TW dc.creator (作者) Shih, Pei Yin en_US dc.date (日期) 2015 en_US dc.date.accessioned 1-Sep-2015 16:09:30 (UTC+8) - dc.date.available 1-Sep-2015 16:09:30 (UTC+8) - dc.date.issued (上傳時間) 1-Sep-2015 16:09:30 (UTC+8) - dc.identifier (Other Identifiers) G0102354021 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/78054 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 統計研究所 zh_TW dc.description (描述) 102354021 zh_TW dc.description.abstract (摘要) 零售業是美國最大的產業之一,近年來科技進步以及網路購物擁有價格優勢、交易方便等優點,未來電子商務將成為主流的銷售形式之一,一般實體零售業者如何因應這股潮流是一大課題。 與本研究有關之美國服飾零售業,實體店家還是占市場的多數,因此,為了提升服飾零售實體店家的競爭優勢,我們預測來店人數,一方面調整人力資源的分配與進貨量,提供顧客優良的服務品質,另一方面視情況提出促銷方案吸引顧客上門,進而提升營運效率。 每年從感恩節到聖誕節這一個月的時間,是關乎全美零售業生存與否的重要時刻,這段時間的銷售額約占全年銷售總額的1/5,也就表示來店人數在這段期間會維持在一定的數值以上甚至達到全年巔峰,而如何不受影響達到精準預測?本研究欲找出指數平滑法中適合的模型精準預測來店人數的資料。 本研究旨在探討指數平滑法與延伸之狀態空間模型,指數平滑法屬於時間序列(Time series)的預測方法,是應用相當廣的一種預測方法,一般由趨勢(Trend)以及季節性(Seasonality)組合而成,而將指數平滑模型加入誤差項以後的狀態空間模型,過去一直沒有一個隨機模型做為架構納入概似估計與預測區間等,近幾年才發展出模型之最佳化準則來估計參數,而本研究想探討哪一個狀態空間模型適用於預測來店人數資料以及狀態空間模型之最佳化準則是否能使預測結果更準確。 本研究之資料為美國時尚精品服飾店2007年營業時間內每小時來店人數,而實證分析後發現Holt-Winters季節性加法模型ETS(A,A,A)蠻適合用來預測來店人數,此外ETS(A,A,A)模型之最佳化準則以AMSE準則與MLE準則表現最佳, MAE準則表現最差。 zh_TW dc.description.tableofcontents 第壹章 緒論 6 第一節 研究背景 6 第二節 研究目的 7 第三節 研究架構 8 第貳章 文獻探討 9 第一節 指數平滑法歷史 9 第二節 狀態空間模型與模型最佳化準則文獻回顧 10 第參章 研究方法 11 第一節 指數平滑法 11 一、簡單指數平滑模型(Simple Exponential Smoothing Method)11 二、Holt’s模型 12 三、Holt-Winters模型 12 第二節 狀態空間模型(State Space Model) 15 第三節 預測績效指標與模型之最佳化準則 18 一、預測績效指標 18 二、模型之最佳化準則(Optimization Criterion) 19 第肆章 實證分析 21 第一節 資料敘述 21 第二節 分析步驟 23 第三節 指數平滑模型分析 25 第伍章 結論與建議 32 第一節 結論 32 第二節 建議 33 參考文獻 34 zh_TW dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0102354021 en_US dc.subject (關鍵詞) 指數平滑法 zh_TW dc.subject (關鍵詞) Holt-Winters模型 zh_TW dc.subject (關鍵詞) 狀態空間模型 zh_TW dc.subject (關鍵詞) 模型之最佳化準則 zh_TW dc.title (題名) 指數平滑模型應用於來店人數預測之研究 zh_TW dc.title (題名) Applications of exponential smoothing to store traffic forecasting en_US dc.type (資料類型) thesis en dc.relation.reference (參考文獻) 英文文獻 1. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. in B. N. Petrov and F. Csaki (eds.) Second International Symposium on Information Theory, pp. 267–281. 2. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, Vol. 19, Issue 6, pp. 716–723. 3. Aoki, M., & Havenner, A. (1991). State space modelling of multiple time series. Econometric Reviews, Vol. 10, Issue 1, pp.1–59. 4. Dielman, T. E. (2006). Choosing Smoothing Parameters For Exponential Smoothing: Minimizing Sums Of Squared Versus Sums Of Absolute Errors. Journal of Modern Applied Statistical Methods, Vol. 5, No. 1, pp. 118-129. 5. Gardner, E. S., Jr. (1999). Rule-Based Forecasting vs. Damped-Trend Exponential Smoothing. Management Science, Vol. 45, No. 8, pp. 1169-1176. 6. Gardner, E. S., Jr. (2006). Exponential smoothing: The state of the art—Part II. International Journal of Forecasting, Vol. 22, Issue 4, pp. 637-666. 7. Hyndman, R. J. (2013). Online course on forecasting using R. 8. Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: the forecast package for R. Journal of Statistical Software, Vol. 27, Issue 3, pp. 1-22. 9. Hyndman, R. J., Koehler, A. B., Ord, J. K., & Snyder, R. D. (2008). Forecasting with Exponential Smoothing. Springer Series in Statistics, pp. 9-29. 10. Hyndman, R. J., Koehler, A. B., Snyder, R. D., & Grose, S. (2002). A state space framework for automatic forecasting using exponential smoothing methods. International Journal of Forecasting, Vol.18, Issue 3, pp. 439–454. 11. Kalman, R. E. (1960). A new approach to linear filtering and prediction problem. Journal of Basic Engineering, Vol. 82, Issue 1, pp.35–45. 12. Kalman, R. E., & Bucy, R. S. (1961). New results in linear filtering and prediction theory. Journal of Basic Engineering, Vol. 83, Issue 3, pp.95–108. 13. Lewis, E. B. (1982). Control of body segment differentiation in Drosophila by the bithorax gene complex. Embryonic Development, Part A: Genetics Aspects, Edited by Burger, M. M. and R. Weber. Alan R. Liss, New York, pp. 269-288. 14. Makridakis, S., & Hibon, M. (1991). Exponential smoothing: The effect of initial values and loss functions on post-sample forecasting accuracy. International Journal of Forecasting, Vol. 7, Issue 3, pp. 317– 330. 15. Muth, J. F. (1960). Optimal properties of exponentially weighted forecasts. Journal of the American Statistical Association, Vol. 55, Issue 290, pp.299–306. 16. Ord, J. K., Koehler, A. B., & Snyder, R. D. (1997). Estimation and Prediction for a Class of Dynamic Nonlinear Statistical Models. Journal of the American Statistical Association, Vol. 92, Issue 440, pp.1621-1629. 17. Stock, K. (2014). These retailers need holiday sales to survive. Business Week. 18. Winters, P. R. (1960). Forecasting Sales by Exponentially Weighted Moving Averages. Management Science, 6, pp. 324-342. 中文文獻 1. 黃心惟 (2010) 以數位口碑為基礎之流行性商品銷售預測,國立臺灣大學資訊管理學研究所碩士論文 zh_TW