學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

  • No doi shows Citation Infomation
題名 奈米碳管和石墨烯與過渡金屬原子鍊的吸附複合材料:第一原理計算研究
Composites of a carbon nanotube and graphene with the adsorption of transition-metal atomic chains: A first-principles study
作者 許庭維
Hsu, Ting Wei
貢獻者 楊志開
Yang, Chih Kai
許庭維
Hsu, Ting Wei
關鍵詞 奈米碳管
奈米石墨帶
過渡性金屬線
石墨烯
複合性材料
局域密度近似
投影擴充波方法
第一原理計算
carbon nanotube
graphene nanoribbon
transition-metal atomic chains
graphene
Composite materials
local-density approximation
projector augmented-wave method
A first-principles study
日期 2015
上傳時間 2-Nov-2015 14:50:59 (UTC+8)
摘要 碳為IV A族,因為每個碳原子有2S 與2P軌域,所以共有四個空缺可以填入電子。碳的同素異形體有很多種類,最常見的有石墨、鑽石及石墨烯(graphene)。這些同素異形體之間的物理性質(外表、硬度、電導率)都具有極大的差異。所以,我找了之前最熱門的的兩個材料去計算,一個為奈米碳管(carbon nanotube)的材料,它的能帶結構可以隨著半徑的長短改變。另一個為奈米石墨帶(graphene nanoribbon)的材料,它具有半導體的特性,而且電子性質與其邊界結構與材料寬度有關。
奈米碳管與奈米石墨帶之間的交互作用主要來自凡得瓦力,但是凡得瓦力是很微弱的力。因此我選用過渡性金屬線,把它放入兩者之間,來加強彼此之間的鍵結能力。因為過渡金屬擁有3d軌域,所以它的性質與其他元素有明顯差別。還有金屬的磁性原理需要從電子的自旋與其結構的軌道角動量去做解釋,所以依照原子序的排列方式,再去進一步探討對磁結構的影響。
故我想探討奈米碳管和奈米石墨帶並在之間吸附過渡性金屬線的複合性材料,本論文使用Vienna Ab initio Simulation Package (VASP) 並且採用局域密度近似(local-density approximation, LDA)與投影擴充波方法(projector augmented-wave method, PAW)的模型去計算此結構,分析磁性分布、能帶、電荷密度等等。在此計算推測過渡性金屬中的鐵磁性元素與非磁性元素分類法對此結構吸附占有決定性差別。
Carbon IV A family, because each carbon atom 2S and 2P orbital, so there are four vacancies can be filled electronic. Carbon allotropes there are many types, the most common are graphite, diamond and graphene. Physical properties (appearance, hardness, conductivity) between these allotropes are great differences. So, I find two of the most popular early to calculate the material, a carbon nanotube of material, its energy band structure may change with the length of the radius. Another material is graphene nanoribbon , it has the characteristics of a semiconductor, and electronic properties of its border width related structures and materials.
Interactions between carbon nanotubes and graphene nanoribbon mainly from the Van der Waals force, but Van der Waals force is very weak force. So I chose a transition metal wire, put it between the two, the purpose is to strengthen the bond capacity between each other. Because the transition metal has 3d orbitals, it`s properties a significant difference with the other elements. There are metal magnetic principle needs to be done to explain the electron spin and the structure of its orbital angular momentum, so in accordance with the atomic arrangement, to go further investigate the effect of the magnetic structure.
Therefore, I would like to explore with carbon nanotubes and nano-graphite and composite materials in adsorption between transition metal wire, the paper using Vienna Ab initio Simulation Package (VASP) and using the local density approximation (local-density approximation, LDA ) and projected expansion wave method (projector augmented-wave method, PAW) model to calculate this structure, analyze magnetic distribution, energy bands, charge density and so on.
參考文獻 參考資料
1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 2004, 306 666.
2. C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. de Heer, J. Phys. Chem. B, 2004, 108, 19912.
3. Y. W. Tan, H. L. Stormer and P. Kim. Nature, 2005, 438, 201.
4. K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin and A. K. Geim, Nat. Phys., 2006, 104, 2, 177
5. R. Saito, M. Fujita, G. Dresselhaus and M. S. Dresselhaus, Appl. Phys. Lett., 1992, 60, 2204; Phys. Rev. B: Condens. Matter, 1992, 46, 1804.
6. T. W. Odom, J. L. Huang, P. Kim and C. W. Lieber, J. Phys. Chem. B, 2000, 104, 2794.
7. F. L. Shyu, C. P. Chang, R. B. Chen, C. W. Chiu and M. F. Lin, Phys, Rev. B: Condens. Matter, 2003, 67, 045405.
8. L. C. Qin, Phys. Chem. Phys., 2007, 9, 31.
9. K. Nakada, M. Fujita, G. Dresseelhaus and M. S. Dresselhaus, Phys. Rev. B: Condens. Matter. 1996, 54, 17954.
10. M. Ezawa, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, 73, 045432.
11. Y. W. Son, M. L. Cohen and S. G. Louie, Phys. Rev. Lett., 2003, 97, 216803.
12. L. Yang, C. H. Park, Y. W. Son, M. L. Cohen and S. G. Louie, Phys. Rev. Lett., 2007, 99, 186801.
13. S. Okada, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, 77, 041408.
14. Y. W. Son, M. L. Cohen and S. G. Louie, Nature, 2006, 444, 347.
15. L. Pisani, J. A. Chan, B. Montanari and N. M. Harrison, Phys. Rev. B: Condens. Mater. Phys., 2007, 75, 064418.
16. A. Thess, R.Lee, P. Nikolaev, H. Dai, P. Petit, J.Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Toma’nek, J. E. Fischer and R. E. Smalley, Science, 1996, 273, 483.
17. Y. H. Ho, C. P. Chang, F. L. Shyu, R. B. Chen, S. C. Chen, S. C. Chen and M. F. Lin, Carbon, 2004, 42, 3159.
18. S. Latil and L. Henrard, Phys. Rev. Lett., 2006, 97, 036803.
19. M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga. A. F. Morpurgo and S. Tarucha, Nanotechnol., 2009, 4, 383.
20. D. Yu and L. Dai, J. Phys. Chem. Lett., 2010, 1, 467.
21. C. H. Lee, C. K. Yang, M. F. Lin, C. P. Chang and W. S. Su, Phys. Chem. Phys.2010, 13, 3925.
22. C. K. Yang, J. Zhao and J.P. Lu, Nano Lett., 2004, 4, 561.
23. E-J. Kan, H. J. Xiang, J. Yang and J. G. Hou, J. Chem. Phys.,2007, 127, 164706.
24. H. Sevincli, M. Topsakal, E. Durgun and S. Ciraci, Phys. Rev. B: Condens. Mater. Phys., 2008, 77, 195434.
25. M. Koleini, M. Paulsson and M. Brandbyge, Phys. Rev. Lett., 2007, 98, 197202.
26. G. Kresse and J. Furthmuller, Phys. Rev. B: Condens. Mater, 1996, 54, 11169.
27. G. Kresse and J. Furthmuller, Comput. Mater. Sci., 1996, 6, 15.
28. J. –K. Lee, S. –C. Lee, Ahn, S. –C. Kim, J. I. B. Wilson and P. John, J. Chem. Phys., 2008, 129, 234709.
29. Chi-Hsuan Lee and Chih-Kai Yang, RSC Advances, 2012, 2, 9958-9963.
30. J. C. Tung and G. Y. Guo, Phys. Rev. B 83, 144403
31. J. C. Tung and G. Y. Guo, Phys. Rev. B 76, 094413
描述 碩士
國立政治大學
應用物理研究所
101755002
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0101755002
資料類型 thesis
dc.contributor.advisor 楊志開zh_TW
dc.contributor.advisor Yang, Chih Kaien_US
dc.contributor.author (Authors) 許庭維zh_TW
dc.contributor.author (Authors) Hsu, Ting Weien_US
dc.creator (作者) 許庭維zh_TW
dc.creator (作者) Hsu, Ting Weien_US
dc.date (日期) 2015en_US
dc.date.accessioned 2-Nov-2015 14:50:59 (UTC+8)-
dc.date.available 2-Nov-2015 14:50:59 (UTC+8)-
dc.date.issued (上傳時間) 2-Nov-2015 14:50:59 (UTC+8)-
dc.identifier (Other Identifiers) G0101755002en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/79210-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用物理研究所zh_TW
dc.description (描述) 101755002zh_TW
dc.description.abstract (摘要) 碳為IV A族,因為每個碳原子有2S 與2P軌域,所以共有四個空缺可以填入電子。碳的同素異形體有很多種類,最常見的有石墨、鑽石及石墨烯(graphene)。這些同素異形體之間的物理性質(外表、硬度、電導率)都具有極大的差異。所以,我找了之前最熱門的的兩個材料去計算,一個為奈米碳管(carbon nanotube)的材料,它的能帶結構可以隨著半徑的長短改變。另一個為奈米石墨帶(graphene nanoribbon)的材料,它具有半導體的特性,而且電子性質與其邊界結構與材料寬度有關。
奈米碳管與奈米石墨帶之間的交互作用主要來自凡得瓦力,但是凡得瓦力是很微弱的力。因此我選用過渡性金屬線,把它放入兩者之間,來加強彼此之間的鍵結能力。因為過渡金屬擁有3d軌域,所以它的性質與其他元素有明顯差別。還有金屬的磁性原理需要從電子的自旋與其結構的軌道角動量去做解釋,所以依照原子序的排列方式,再去進一步探討對磁結構的影響。
故我想探討奈米碳管和奈米石墨帶並在之間吸附過渡性金屬線的複合性材料,本論文使用Vienna Ab initio Simulation Package (VASP) 並且採用局域密度近似(local-density approximation, LDA)與投影擴充波方法(projector augmented-wave method, PAW)的模型去計算此結構,分析磁性分布、能帶、電荷密度等等。在此計算推測過渡性金屬中的鐵磁性元素與非磁性元素分類法對此結構吸附占有決定性差別。
zh_TW
dc.description.abstract (摘要) Carbon IV A family, because each carbon atom 2S and 2P orbital, so there are four vacancies can be filled electronic. Carbon allotropes there are many types, the most common are graphite, diamond and graphene. Physical properties (appearance, hardness, conductivity) between these allotropes are great differences. So, I find two of the most popular early to calculate the material, a carbon nanotube of material, its energy band structure may change with the length of the radius. Another material is graphene nanoribbon , it has the characteristics of a semiconductor, and electronic properties of its border width related structures and materials.
Interactions between carbon nanotubes and graphene nanoribbon mainly from the Van der Waals force, but Van der Waals force is very weak force. So I chose a transition metal wire, put it between the two, the purpose is to strengthen the bond capacity between each other. Because the transition metal has 3d orbitals, it`s properties a significant difference with the other elements. There are metal magnetic principle needs to be done to explain the electron spin and the structure of its orbital angular momentum, so in accordance with the atomic arrangement, to go further investigate the effect of the magnetic structure.
Therefore, I would like to explore with carbon nanotubes and nano-graphite and composite materials in adsorption between transition metal wire, the paper using Vienna Ab initio Simulation Package (VASP) and using the local density approximation (local-density approximation, LDA ) and projected expansion wave method (projector augmented-wave method, PAW) model to calculate this structure, analyze magnetic distribution, energy bands, charge density and so on.
en_US
dc.description.tableofcontents 謝辭 I
摘要 II
Abstract III
目錄 IV
圖目錄 IV
表目錄 VII
第一章 緒論 - 1 -
第二章 研究方法 - 2 -
第三章 一條金屬線樣品的一倍結構 - 5 -
第一節 研究樣品結構 - 5 -
第二節 樣品的結合能 - 7 -
第三節 各金屬一倍分析 - 14 -
第四章 一條金屬線樣品的兩倍結構 - 33 -
第一節 研究樣品結構 - 33 -
第二節 樣品的結合能 - 34 -
第三節 各金屬兩倍分析 - 42 -
第五章 兩條金屬線樣品一倍結構 - 61 -
第一節 研究樣品結構 - 61 -
第二節 一倍結構的結合能 - 62 -
第二節 各金屬一條與兩條的一倍分析 - 69 -
第六章 兩條金屬線樣品的兩倍結構 - 85 -
第一節 研究樣品結構 - 85 -
第二節 兩條金屬線一倍與兩倍結構比較 - 86 -
參考資料 - 91 -
zh_TW
dc.format.extent 6003491 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0101755002en_US
dc.subject (關鍵詞) 奈米碳管zh_TW
dc.subject (關鍵詞) 奈米石墨帶zh_TW
dc.subject (關鍵詞) 過渡性金屬線zh_TW
dc.subject (關鍵詞) 石墨烯zh_TW
dc.subject (關鍵詞) 複合性材料zh_TW
dc.subject (關鍵詞) 局域密度近似zh_TW
dc.subject (關鍵詞) 投影擴充波方法zh_TW
dc.subject (關鍵詞) 第一原理計算zh_TW
dc.subject (關鍵詞) carbon nanotubeen_US
dc.subject (關鍵詞) graphene nanoribbonen_US
dc.subject (關鍵詞) transition-metal atomic chainsen_US
dc.subject (關鍵詞) grapheneen_US
dc.subject (關鍵詞) Composite materialsen_US
dc.subject (關鍵詞) local-density approximationen_US
dc.subject (關鍵詞) projector augmented-wave methoden_US
dc.subject (關鍵詞) A first-principles studyen_US
dc.title (題名) 奈米碳管和石墨烯與過渡金屬原子鍊的吸附複合材料:第一原理計算研究zh_TW
dc.title (題名) Composites of a carbon nanotube and graphene with the adsorption of transition-metal atomic chains: A first-principles studyen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 參考資料
1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 2004, 306 666.
2. C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. de Heer, J. Phys. Chem. B, 2004, 108, 19912.
3. Y. W. Tan, H. L. Stormer and P. Kim. Nature, 2005, 438, 201.
4. K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin and A. K. Geim, Nat. Phys., 2006, 104, 2, 177
5. R. Saito, M. Fujita, G. Dresselhaus and M. S. Dresselhaus, Appl. Phys. Lett., 1992, 60, 2204; Phys. Rev. B: Condens. Matter, 1992, 46, 1804.
6. T. W. Odom, J. L. Huang, P. Kim and C. W. Lieber, J. Phys. Chem. B, 2000, 104, 2794.
7. F. L. Shyu, C. P. Chang, R. B. Chen, C. W. Chiu and M. F. Lin, Phys, Rev. B: Condens. Matter, 2003, 67, 045405.
8. L. C. Qin, Phys. Chem. Phys., 2007, 9, 31.
9. K. Nakada, M. Fujita, G. Dresseelhaus and M. S. Dresselhaus, Phys. Rev. B: Condens. Matter. 1996, 54, 17954.
10. M. Ezawa, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, 73, 045432.
11. Y. W. Son, M. L. Cohen and S. G. Louie, Phys. Rev. Lett., 2003, 97, 216803.
12. L. Yang, C. H. Park, Y. W. Son, M. L. Cohen and S. G. Louie, Phys. Rev. Lett., 2007, 99, 186801.
13. S. Okada, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, 77, 041408.
14. Y. W. Son, M. L. Cohen and S. G. Louie, Nature, 2006, 444, 347.
15. L. Pisani, J. A. Chan, B. Montanari and N. M. Harrison, Phys. Rev. B: Condens. Mater. Phys., 2007, 75, 064418.
16. A. Thess, R.Lee, P. Nikolaev, H. Dai, P. Petit, J.Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Toma’nek, J. E. Fischer and R. E. Smalley, Science, 1996, 273, 483.
17. Y. H. Ho, C. P. Chang, F. L. Shyu, R. B. Chen, S. C. Chen, S. C. Chen and M. F. Lin, Carbon, 2004, 42, 3159.
18. S. Latil and L. Henrard, Phys. Rev. Lett., 2006, 97, 036803.
19. M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga. A. F. Morpurgo and S. Tarucha, Nanotechnol., 2009, 4, 383.
20. D. Yu and L. Dai, J. Phys. Chem. Lett., 2010, 1, 467.
21. C. H. Lee, C. K. Yang, M. F. Lin, C. P. Chang and W. S. Su, Phys. Chem. Phys.2010, 13, 3925.
22. C. K. Yang, J. Zhao and J.P. Lu, Nano Lett., 2004, 4, 561.
23. E-J. Kan, H. J. Xiang, J. Yang and J. G. Hou, J. Chem. Phys.,2007, 127, 164706.
24. H. Sevincli, M. Topsakal, E. Durgun and S. Ciraci, Phys. Rev. B: Condens. Mater. Phys., 2008, 77, 195434.
25. M. Koleini, M. Paulsson and M. Brandbyge, Phys. Rev. Lett., 2007, 98, 197202.
26. G. Kresse and J. Furthmuller, Phys. Rev. B: Condens. Mater, 1996, 54, 11169.
27. G. Kresse and J. Furthmuller, Comput. Mater. Sci., 1996, 6, 15.
28. J. –K. Lee, S. –C. Lee, Ahn, S. –C. Kim, J. I. B. Wilson and P. John, J. Chem. Phys., 2008, 129, 234709.
29. Chi-Hsuan Lee and Chih-Kai Yang, RSC Advances, 2012, 2, 9958-9963.
30. J. C. Tung and G. Y. Guo, Phys. Rev. B 83, 144403
31. J. C. Tung and G. Y. Guo, Phys. Rev. B 76, 094413
zh_TW