Publications-Theses
Article View/Open
- pdf(268)pdf(198)pdf(214)pdf(209)pdf(225)pdf(286)pdf(257)pdf(271)pdf(230)pdf(268)pdf(242)pdf(276)pdf(299)pdf(239)pdf(254)pdf(203)pdf(250)pdf(265)pdf(246)pdf(243)pdf(208)pdf(249)pdf(209)pdf(203)pdf(231)
Publication Export
-
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
題名 羅吉斯迴歸模式的診斷方法與探討 作者 許瓈云 貢獻者 江振東
許瓈云關鍵詞 羅吉斯迴歸模式
模式診斷日期 2000 上傳時間 30-Mar-2016 19:12:49 (UTC+8) 摘要 在運用羅吉斯迴歸模式作資料分析時,若是違反了模式的假設,則所做出來的模式都會導致錯誤的統計推論。因此,模式的診斷常常被應用來發掘問題並判斷假設是否合理。本研究是將以往文獻中相關議題的討論做一個有系統的整理,俾便往後的研究者在作羅吉斯迴歸模式診斷時,能有一個可以依循的準則。此外,每種模式診斷的方法皆附上範例及分析過程以供參考。
When the assumptions of logistic regression analysis are violated, any calculation of a logistic model may lead to invalid statistical inference. Diagnostics are frequently employed to explore problems and determine whether certain assumptions are reasonable. We survey relevant literatures on diagnostics and try to provide a guideline for detecting and correcting violations of logistic regression assumptions.參考文獻 Andrews, D. F. and D. Pregibon. (1978). Finding the outliers that matter. Journal of the Royal Statistical Society, Series B40, 85-94. Belsley, D. A., E. Kuh. and R. E. Welsch. (1980). Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. John Wiley and Sons, New York. Christensen, R. (1997). Log-linear Models and Logistic Regression. Springer-Verlag, New York. Collett, D. (1991). Modelling Binary Data. Chapman and Hall, London. Cook, R. D. (1977). Detection of influential observations in linear regression. Technometrics, 19, 15-18. Cook, R. D. (1979). Influential observations in linear regression. Journal of the American statistical Association, 74, 169-174. Copas, J. B. (1988). Binary regression models for contaminated data (with discussion). Journal of the Royal Statistical Society, Series B50, 225-265. Fowlkes, E. B. (1987). Some diagnostics for binary regression via smoothing. Biometrika, 74, 503-505. Hoaglin, D. C. and R. E. Welsch. (1978). The hat matrix in regression and ANOVA. The American Statistician, 32, 17-22. Hosmer, D. W. and S. Lemeshow. (1980). A goodness-of-fit test for the multiple logistic regression model. Communications in Statistics. A9(10), 1043-1069. Hosmer, D. W. and S. Lemeshow. (1989). Applied Logistic Regression. John Wiley and Sons, New York. Hosmer, D. W., S. Taber, and S. Lemeshow. (1991). The importance of assessing the fit of logistic regression models: a case study. American Journal of Public Health, 81, 1630-1635. Jennings, D. E. (1986). Outliers and residual distributions in logistic regression. Journal of the American Statistical Association, 81, 987-990. Kay, R. and S. Little. (1986). Assessing the fit of the logistic model: a case study of children with the haemolytic uraemic syndrome. Applied Statistics, 35, 16-30. Kim, C. and K. Jeong. (1993). On the logistic regression diagnostics. Journal of the korean Statistical Society, 22, 27-37. Landwehr, J. M., D. Pergibon, and A. C. Shoemaker. (1984). Graphical methods for assessing logistic regression models. Journal of the American statistical Association, 79, 61-71. Pregibon, D. (1981). Logistic regression diagnostics. Annals of Statistics, 9, 705-724. Ryan, T. P. (1996). Modern Regression Methods. John Wiley and Sons, New York. Wang, P. C. (1987). Residual plots for detecting nonlinearity in generalized linear models. Technometrics, 29, 435-438. 描述 碩士
國立政治大學
統計學系
86354012資料來源 http://thesis.lib.nccu.edu.tw/record/#A2002001931 資料類型 thesis dc.contributor.advisor 江振東 zh_TW dc.contributor.author (Authors) 許瓈云 zh_TW dc.creator (作者) 許瓈云 zh_TW dc.date (日期) 2000 en_US dc.date.accessioned 30-Mar-2016 19:12:49 (UTC+8) - dc.date.available 30-Mar-2016 19:12:49 (UTC+8) - dc.date.issued (上傳時間) 30-Mar-2016 19:12:49 (UTC+8) - dc.identifier (Other Identifiers) A2002001931 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/83109 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 統計學系 zh_TW dc.description (描述) 86354012 zh_TW dc.description.abstract (摘要) 在運用羅吉斯迴歸模式作資料分析時,若是違反了模式的假設,則所做出來的模式都會導致錯誤的統計推論。因此,模式的診斷常常被應用來發掘問題並判斷假設是否合理。本研究是將以往文獻中相關議題的討論做一個有系統的整理,俾便往後的研究者在作羅吉斯迴歸模式診斷時,能有一個可以依循的準則。此外,每種模式診斷的方法皆附上範例及分析過程以供參考。 zh_TW dc.description.abstract (摘要) When the assumptions of logistic regression analysis are violated, any calculation of a logistic model may lead to invalid statistical inference. Diagnostics are frequently employed to explore problems and determine whether certain assumptions are reasonable. We survey relevant literatures on diagnostics and try to provide a guideline for detecting and correcting violations of logistic regression assumptions. en_US dc.description.tableofcontents 封面頁 證明書 致謝詞 論文摘要 目錄 表目錄 圖目錄 第一章 緒論 第一節 研究動機與目的 第二節 相關文獻 第三節 本文架構 第二章 羅吉斯迴歸模式的基本理論 第一節 一般線性迴歸模式的基本架構 第二節 羅吉斯迴歸模式的基本架構 第三節 羅吉斯迴歸模式與線性迴歸模式之比較 第三章 羅吉斯迴歸模型的診斷方法 第一節 診斷二項資料的模式 第二節 診斷二元資料的模式 第三節 其他說明 第四章 實證分析 第一節 二項資料的診斷 第二節 二元資料的診斷 第五章 總結 參考文獻 附錄 zh_TW dc.format.extent 53590 bytes - dc.format.extent 208642 bytes - dc.format.extent 90082 bytes - dc.format.extent 104175 bytes - dc.format.extent 66225 bytes - dc.format.extent 174720 bytes - dc.format.extent 203144 bytes - dc.format.extent 199661 bytes - dc.format.extent 53590 bytes - dc.format.extent 53590 bytes - dc.format.extent 53590 bytes - dc.format.extent 514315 bytes - dc.format.extent 53590 bytes - dc.format.extent 53590 bytes - dc.format.extent 53590 bytes - dc.format.extent 2394372 bytes - dc.format.extent 53590 bytes - dc.format.extent 53590 bytes - dc.format.extent 53590 bytes - dc.format.extent 1039513 bytes - dc.format.extent 53590 bytes - dc.format.extent 53590 bytes - dc.format.extent 82416 bytes - dc.format.extent 126546 bytes - dc.format.extent 545107 bytes - dc.format.mimetype application/pdf - dc.format.mimetype application/pdf - dc.format.mimetype application/pdf - dc.format.mimetype application/pdf - dc.format.mimetype application/pdf - dc.format.mimetype application/pdf - dc.format.mimetype application/pdf - dc.format.mimetype application/pdf - dc.format.mimetype application/pdf - dc.format.mimetype application/pdf - dc.format.mimetype application/pdf - dc.format.mimetype application/pdf - dc.format.mimetype application/pdf - dc.format.mimetype application/pdf - dc.format.mimetype application/pdf - dc.format.mimetype application/pdf - dc.format.mimetype application/pdf - dc.format.mimetype application/pdf - dc.format.mimetype application/pdf - dc.format.mimetype application/pdf - dc.format.mimetype application/pdf - dc.format.mimetype application/pdf - dc.format.mimetype application/pdf - dc.format.mimetype application/pdf - dc.format.mimetype application/pdf - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#A2002001931 en_US dc.subject (關鍵詞) 羅吉斯迴歸模式 zh_TW dc.subject (關鍵詞) 模式診斷 zh_TW dc.title (題名) 羅吉斯迴歸模式的診斷方法與探討 zh_TW dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) Andrews, D. F. and D. Pregibon. (1978). Finding the outliers that matter. Journal of the Royal Statistical Society, Series B40, 85-94. Belsley, D. A., E. Kuh. and R. E. Welsch. (1980). Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. John Wiley and Sons, New York. Christensen, R. (1997). Log-linear Models and Logistic Regression. Springer-Verlag, New York. Collett, D. (1991). Modelling Binary Data. Chapman and Hall, London. Cook, R. D. (1977). Detection of influential observations in linear regression. Technometrics, 19, 15-18. Cook, R. D. (1979). Influential observations in linear regression. Journal of the American statistical Association, 74, 169-174. Copas, J. B. (1988). Binary regression models for contaminated data (with discussion). Journal of the Royal Statistical Society, Series B50, 225-265. Fowlkes, E. B. (1987). Some diagnostics for binary regression via smoothing. Biometrika, 74, 503-505. Hoaglin, D. C. and R. E. Welsch. (1978). The hat matrix in regression and ANOVA. The American Statistician, 32, 17-22. Hosmer, D. W. and S. Lemeshow. (1980). A goodness-of-fit test for the multiple logistic regression model. Communications in Statistics. A9(10), 1043-1069. Hosmer, D. W. and S. Lemeshow. (1989). Applied Logistic Regression. John Wiley and Sons, New York. Hosmer, D. W., S. Taber, and S. Lemeshow. (1991). The importance of assessing the fit of logistic regression models: a case study. American Journal of Public Health, 81, 1630-1635. Jennings, D. E. (1986). Outliers and residual distributions in logistic regression. Journal of the American Statistical Association, 81, 987-990. Kay, R. and S. Little. (1986). Assessing the fit of the logistic model: a case study of children with the haemolytic uraemic syndrome. Applied Statistics, 35, 16-30. Kim, C. and K. Jeong. (1993). On the logistic regression diagnostics. Journal of the korean Statistical Society, 22, 27-37. Landwehr, J. M., D. Pergibon, and A. C. Shoemaker. (1984). Graphical methods for assessing logistic regression models. Journal of the American statistical Association, 79, 61-71. Pregibon, D. (1981). Logistic regression diagnostics. Annals of Statistics, 9, 705-724. Ryan, T. P. (1996). Modern Regression Methods. John Wiley and Sons, New York. Wang, P. C. (1987). Residual plots for detecting nonlinearity in generalized linear models. Technometrics, 29, 435-438. zh_TW