Publications-Theses

題名 羅吉斯迴歸模式的診斷方法與探討
作者 許瓈云
貢獻者 江振東
許瓈云
關鍵詞 羅吉斯迴歸模式
模式診斷
日期 2000
上傳時間 30-Mar-2016 19:12:49 (UTC+8)
摘要 在運用羅吉斯迴歸模式作資料分析時,若是違反了模式的假設,則所做出來的模式都會導致錯誤的統計推論。因此,模式的診斷常常被應用來發掘問題並判斷假設是否合理。本研究是將以往文獻中相關議題的討論做一個有系統的整理,俾便往後的研究者在作羅吉斯迴歸模式診斷時,能有一個可以依循的準則。此外,每種模式診斷的方法皆附上範例及分析過程以供參考。
When the assumptions of logistic regression analysis are violated, any calculation of a logistic model may lead to invalid statistical inference. Diagnostics are frequently employed to explore problems and determine whether certain assumptions are reasonable. We survey relevant literatures on diagnostics and try to provide a guideline for detecting and correcting violations of logistic regression assumptions.
參考文獻 Andrews, D. F. and D. Pregibon. (1978). Finding the outliers that matter. Journal of the Royal Statistical Society, Series B40, 85-94.
     Belsley, D. A., E. Kuh. and R. E. Welsch. (1980). Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. John Wiley and Sons, New York.
     Christensen, R. (1997). Log-linear Models and Logistic Regression. Springer-Verlag, New York.
     Collett, D. (1991). Modelling Binary Data. Chapman and Hall, London.
     Cook, R. D. (1977). Detection of influential observations in linear regression. Technometrics, 19, 15-18.
     Cook, R. D. (1979). Influential observations in linear regression. Journal of the American statistical Association, 74, 169-174.
     Copas, J. B. (1988). Binary regression models for contaminated data (with discussion). Journal of the Royal Statistical Society, Series B50, 225-265.
     Fowlkes, E. B. (1987). Some diagnostics for binary regression via smoothing. Biometrika, 74, 503-505.
     Hoaglin, D. C. and R. E. Welsch. (1978). The hat matrix in regression and ANOVA. The American Statistician, 32, 17-22.
     Hosmer, D. W. and S. Lemeshow. (1980). A goodness-of-fit test for the multiple logistic regression model. Communications in Statistics. A9(10), 1043-1069.
     Hosmer, D. W. and S. Lemeshow. (1989). Applied Logistic Regression. John Wiley and Sons, New York.
     Hosmer, D. W., S. Taber, and S. Lemeshow. (1991). The importance of assessing the fit of logistic regression models: a case study. American Journal of Public Health, 81, 1630-1635.
     Jennings, D. E. (1986). Outliers and residual distributions in logistic regression. Journal of the American Statistical Association, 81, 987-990.
     Kay, R. and S. Little. (1986). Assessing the fit of the logistic model: a case study of children with the haemolytic uraemic syndrome. Applied Statistics, 35, 16-30.
     Kim, C. and K. Jeong. (1993). On the logistic regression diagnostics. Journal of the korean Statistical Society, 22, 27-37.
     Landwehr, J. M., D. Pergibon, and A. C. Shoemaker. (1984). Graphical methods for assessing logistic regression models. Journal of the American statistical Association, 79, 61-71.
     Pregibon, D. (1981). Logistic regression diagnostics. Annals of Statistics, 9, 705-724.
     Ryan, T. P. (1996). Modern Regression Methods. John Wiley and Sons, New York.
     Wang, P. C. (1987). Residual plots for detecting nonlinearity in generalized linear models. Technometrics, 29, 435-438.
描述 碩士
國立政治大學
統計學系
86354012
資料來源 http://thesis.lib.nccu.edu.tw/record/#A2002001931
資料類型 thesis
dc.contributor.advisor 江振東zh_TW
dc.contributor.author (Authors) 許瓈云zh_TW
dc.creator (作者) 許瓈云zh_TW
dc.date (日期) 2000en_US
dc.date.accessioned 30-Mar-2016 19:12:49 (UTC+8)-
dc.date.available 30-Mar-2016 19:12:49 (UTC+8)-
dc.date.issued (上傳時間) 30-Mar-2016 19:12:49 (UTC+8)-
dc.identifier (Other Identifiers) A2002001931en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/83109-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計學系zh_TW
dc.description (描述) 86354012zh_TW
dc.description.abstract (摘要) 在運用羅吉斯迴歸模式作資料分析時,若是違反了模式的假設,則所做出來的模式都會導致錯誤的統計推論。因此,模式的診斷常常被應用來發掘問題並判斷假設是否合理。本研究是將以往文獻中相關議題的討論做一個有系統的整理,俾便往後的研究者在作羅吉斯迴歸模式診斷時,能有一個可以依循的準則。此外,每種模式診斷的方法皆附上範例及分析過程以供參考。zh_TW
dc.description.abstract (摘要) When the assumptions of logistic regression analysis are violated, any calculation of a logistic model may lead to invalid statistical inference. Diagnostics are frequently employed to explore problems and determine whether certain assumptions are reasonable. We survey relevant literatures on diagnostics and try to provide a guideline for detecting and correcting violations of logistic regression assumptions.en_US
dc.description.tableofcontents 封面頁
     證明書
     致謝詞
     論文摘要
     目錄
     表目錄
     圖目錄
     第一章 緒論
     第一節 研究動機與目的
     第二節 相關文獻
     第三節 本文架構
     第二章 羅吉斯迴歸模式的基本理論
     第一節 一般線性迴歸模式的基本架構
     第二節 羅吉斯迴歸模式的基本架構
     第三節 羅吉斯迴歸模式與線性迴歸模式之比較
     第三章 羅吉斯迴歸模型的診斷方法
     第一節 診斷二項資料的模式
     第二節 診斷二元資料的模式
     第三節 其他說明
     第四章 實證分析
     第一節 二項資料的診斷
     第二節 二元資料的診斷
     第五章 總結
     參考文獻
     附錄
zh_TW
dc.format.extent 53590 bytes-
dc.format.extent 208642 bytes-
dc.format.extent 90082 bytes-
dc.format.extent 104175 bytes-
dc.format.extent 66225 bytes-
dc.format.extent 174720 bytes-
dc.format.extent 203144 bytes-
dc.format.extent 199661 bytes-
dc.format.extent 53590 bytes-
dc.format.extent 53590 bytes-
dc.format.extent 53590 bytes-
dc.format.extent 514315 bytes-
dc.format.extent 53590 bytes-
dc.format.extent 53590 bytes-
dc.format.extent 53590 bytes-
dc.format.extent 2394372 bytes-
dc.format.extent 53590 bytes-
dc.format.extent 53590 bytes-
dc.format.extent 53590 bytes-
dc.format.extent 1039513 bytes-
dc.format.extent 53590 bytes-
dc.format.extent 53590 bytes-
dc.format.extent 82416 bytes-
dc.format.extent 126546 bytes-
dc.format.extent 545107 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#A2002001931en_US
dc.subject (關鍵詞) 羅吉斯迴歸模式zh_TW
dc.subject (關鍵詞) 模式診斷zh_TW
dc.title (題名) 羅吉斯迴歸模式的診斷方法與探討zh_TW
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) Andrews, D. F. and D. Pregibon. (1978). Finding the outliers that matter. Journal of the Royal Statistical Society, Series B40, 85-94.
     Belsley, D. A., E. Kuh. and R. E. Welsch. (1980). Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. John Wiley and Sons, New York.
     Christensen, R. (1997). Log-linear Models and Logistic Regression. Springer-Verlag, New York.
     Collett, D. (1991). Modelling Binary Data. Chapman and Hall, London.
     Cook, R. D. (1977). Detection of influential observations in linear regression. Technometrics, 19, 15-18.
     Cook, R. D. (1979). Influential observations in linear regression. Journal of the American statistical Association, 74, 169-174.
     Copas, J. B. (1988). Binary regression models for contaminated data (with discussion). Journal of the Royal Statistical Society, Series B50, 225-265.
     Fowlkes, E. B. (1987). Some diagnostics for binary regression via smoothing. Biometrika, 74, 503-505.
     Hoaglin, D. C. and R. E. Welsch. (1978). The hat matrix in regression and ANOVA. The American Statistician, 32, 17-22.
     Hosmer, D. W. and S. Lemeshow. (1980). A goodness-of-fit test for the multiple logistic regression model. Communications in Statistics. A9(10), 1043-1069.
     Hosmer, D. W. and S. Lemeshow. (1989). Applied Logistic Regression. John Wiley and Sons, New York.
     Hosmer, D. W., S. Taber, and S. Lemeshow. (1991). The importance of assessing the fit of logistic regression models: a case study. American Journal of Public Health, 81, 1630-1635.
     Jennings, D. E. (1986). Outliers and residual distributions in logistic regression. Journal of the American Statistical Association, 81, 987-990.
     Kay, R. and S. Little. (1986). Assessing the fit of the logistic model: a case study of children with the haemolytic uraemic syndrome. Applied Statistics, 35, 16-30.
     Kim, C. and K. Jeong. (1993). On the logistic regression diagnostics. Journal of the korean Statistical Society, 22, 27-37.
     Landwehr, J. M., D. Pergibon, and A. C. Shoemaker. (1984). Graphical methods for assessing logistic regression models. Journal of the American statistical Association, 79, 61-71.
     Pregibon, D. (1981). Logistic regression diagnostics. Annals of Statistics, 9, 705-724.
     Ryan, T. P. (1996). Modern Regression Methods. John Wiley and Sons, New York.
     Wang, P. C. (1987). Residual plots for detecting nonlinearity in generalized linear models. Technometrics, 29, 435-438.
zh_TW