Publications-Theses
Article View/Open
Publication Export
-
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
題名 設限與截斷資料Weibull模式之研究
A Weibull-based proportional hazards model for arbitrarily censored and truncated data作者 黃偉傑
Huang, Wei-Jie貢獻者 陳麗霞
Chen, Li-Shya
黃偉傑
Huang, Wei-Jie關鍵詞 成比例危險迴歸模式
設限
截斷
中點估計
Proportional hazards regression model
Censoring
Truncation
Midpoint estimation日期 2000 上傳時間 31-Mar-2016 14:44:56 (UTC+8) 摘要 成比例危險迴歸模式常被用於分析存活資料,Weibull模式更是其中惟一兼具加速失敗特性者。本論文將利用兩種分析方法,以研究任意設限及截斷資料的Weibull迴歸模式。第一種方法是利用最大概似估計法求算設限及截斷資料下的參數估計值(MLE),第二種方法則是對左設限及區間設限分別以所在區間之中點代入,稱其為中點估計法,再求算模式中的參數估計值(MDE)。並對此兩種估計方法進行比較。模擬結果顯示,相當地大樣本之下,最大概似估計法在許多情況均優於中點估計法;而在樣本少、危險率為平穩或接近平穩且區間設限比率約為0.5時,中點估計法是可被推薦的。而且,本論文亦提出對設限及截斷資料的Weibull模式之適合度檢驗程序。
The proportional hazards regression model is most commonly used model for lifetime data. The Weibull model is the only parametric model which has both a proportional hazards representation and an accelerated failure-time representation. This paper studies the use of a Weibull-based proportional hazards regression model when any censored and truncated data are observed. Two alternative methods of analysis are considered. First, the maximum likelihood estimates(MLEs) of parameters are computed for the observed censoring and truncation pattern. Second, the estimates where midpoints are substituted for left- and interval-censored data(midpoint estimation, MDE)are computed. Then, MLEs are compared with MDEs. Simulation studies indicate that for relative large samples there are many instances when the MLE is superior to the MDE. For small samples where the hazard rate is flat or nearly so, and the percentage of interval-censored data is nearly half of samples, the MDE is adequate. Also, an evaluation of the adequacy of the Weibull model for any censored and truncated data is proposed.參考文獻 [1]Alioum, A., and Commenges, D. (1996). “A proportional hazards model for arbitrarily censored and truncated data”, Biometrics, vol. 52, p.512-524.[2]Barlow, W, E and Prentice, R. (1988). “Residuals for relative risk regression”, Biometrika, vol. 75, p.65-74.[3]Brookmeyer, R., and Goedert, J. J. (1989). “Censoring in an epidemic with an application to hemophilia-associated AIDS”, Biometrics, vol. 45, p.325-335.[4]Cox, D. R. (1972). “Regression model and life tables (with discussion)”, Journal of the Royal Statistical Society, Series B, vol. 39, p. 1-38.[5]Crowley, J. and Hu, M. (1977). “Covariance analysis of heart transplant survival data”, Journal of the American Statistical Association, vol. 73, p.27-36.[6]Finkelstein, D. M. (1986). “A proportional hazards model for interval-censored failure time data”, Biometrics, vol. 42, p.845-854.[7]Finkelstein, D. M., Moore, D. F., and Schoenfeld, D. A. (1993). “A proportional hazards model for truncated AIDS data”, Biometrics, vol. 49, p.731-740.[8]Flygare, M. E., Austin, J. A., and Buckwalter, R. M. (1985). “Maximum likelihood estimation for the 2-parameter Weibull distribution based on interval-data”, IEEE transactions on reliability, vol. 34, p.57-59.[9]Frydman, H.(1994). “A note on nonparametric estimation of the distribution function from interval-censored and truncated observations”, Journal of the Royal Statistical Society, Series B, vol. 56, p.71-74.[10]Gentleman, R., and Geyer, C. J. (1994). “Maximun likelihood for interval censored data: consistency and computation”, Biometrika, vol. 81, p.618-623.[11]Klein, J. P., and Moeschberger, M. L. (1997). Survival Analysis. New York: Springer-Verlag.[12]Odell, P. M., Anderson, K. M., and D’Agostino, R. B. (1992). “Maximum likelihood estimation for interval-censored data using a Weibull-based accelerated failure time model”, Biometrics, vol. 48, p.951-959.[13]Pan, W., and Chappell, R. (1998). “Computation of the NPMLE of distribution functions for interval censored and truncated data with applications to the Cox model”, Computational Statistics & Data Analysis, vol. 28, p.33-50.[14]Peto, R. (1973). “Experimental survival curves for interval-censored data”, Applied Statistics, vol. 22, p.86-91.[15]Turnbull, B. W. (1976). “The empirical distribution function with arbitrary grouped, censored and truncated data”, Journal of the Royal Statistical Society, Series B, vol. 38, p.290-295. 描述 碩士
國立政治大學
統計學系
87354002資料來源 http://thesis.lib.nccu.edu.tw/record/#A2002001945 資料類型 thesis dc.contributor.advisor 陳麗霞 zh_TW dc.contributor.advisor Chen, Li-Shya en_US dc.contributor.author (Authors) 黃偉傑 zh_TW dc.contributor.author (Authors) Huang, Wei-Jie en_US dc.creator (作者) 黃偉傑 zh_TW dc.creator (作者) Huang, Wei-Jie en_US dc.date (日期) 2000 en_US dc.date.accessioned 31-Mar-2016 14:44:56 (UTC+8) - dc.date.available 31-Mar-2016 14:44:56 (UTC+8) - dc.date.issued (上傳時間) 31-Mar-2016 14:44:56 (UTC+8) - dc.identifier (Other Identifiers) A2002001945 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/83251 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 統計學系 zh_TW dc.description (描述) 87354002 zh_TW dc.description.abstract (摘要) 成比例危險迴歸模式常被用於分析存活資料,Weibull模式更是其中惟一兼具加速失敗特性者。本論文將利用兩種分析方法,以研究任意設限及截斷資料的Weibull迴歸模式。第一種方法是利用最大概似估計法求算設限及截斷資料下的參數估計值(MLE),第二種方法則是對左設限及區間設限分別以所在區間之中點代入,稱其為中點估計法,再求算模式中的參數估計值(MDE)。並對此兩種估計方法進行比較。模擬結果顯示,相當地大樣本之下,最大概似估計法在許多情況均優於中點估計法;而在樣本少、危險率為平穩或接近平穩且區間設限比率約為0.5時,中點估計法是可被推薦的。而且,本論文亦提出對設限及截斷資料的Weibull模式之適合度檢驗程序。 zh_TW dc.description.abstract (摘要) The proportional hazards regression model is most commonly used model for lifetime data. The Weibull model is the only parametric model which has both a proportional hazards representation and an accelerated failure-time representation. This paper studies the use of a Weibull-based proportional hazards regression model when any censored and truncated data are observed. Two alternative methods of analysis are considered. First, the maximum likelihood estimates(MLEs) of parameters are computed for the observed censoring and truncation pattern. Second, the estimates where midpoints are substituted for left- and interval-censored data(midpoint estimation, MDE)are computed. Then, MLEs are compared with MDEs. Simulation studies indicate that for relative large samples there are many instances when the MLE is superior to the MDE. For small samples where the hazard rate is flat or nearly so, and the percentage of interval-censored data is nearly half of samples, the MDE is adequate. Also, an evaluation of the adequacy of the Weibull model for any censored and truncated data is proposed. en_US dc.description.tableofcontents 封面頁證明書致謝詞論文摘要目錄表目錄圖目錄第一章 緒論1.1 研究動機與目的1.2 文獻回顧1.3 研究限制及論文架構第二章 Weibull模式的參數估計2.1 簡介2.2 模式2.2.1 概似函數2.2.2 Weibull模式2.3 參數估計2.3.1 最大概似估計(MLE)2.3.2 中點估計法(MDE)第三章 模式適合度之圖形檢驗3.1 存活函數之無母數最大概似估計量3.1.1 介紹3.1.2 自行一致估計量3.2 殘差適合度之圖形檢驗第四章 模擬方法與結果4.1 模擬方法4.1.1 左截斷及設限資料之模擬4.1.2 數值分析方法4.2 模擬結果第五章 結論與建議5.1 結論5.2 建議參考文獻附錄附錄一 MLE法之S-PLUS程式附錄二 MDE法之S-PLUS程式 zh_TW dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#A2002001945 en_US dc.subject (關鍵詞) 成比例危險迴歸模式 zh_TW dc.subject (關鍵詞) 設限 zh_TW dc.subject (關鍵詞) 截斷 zh_TW dc.subject (關鍵詞) 中點估計 zh_TW dc.subject (關鍵詞) Proportional hazards regression model en_US dc.subject (關鍵詞) Censoring en_US dc.subject (關鍵詞) Truncation en_US dc.subject (關鍵詞) Midpoint estimation en_US dc.title (題名) 設限與截斷資料Weibull模式之研究 zh_TW dc.title (題名) A Weibull-based proportional hazards model for arbitrarily censored and truncated data en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) [1]Alioum, A., and Commenges, D. (1996). “A proportional hazards model for arbitrarily censored and truncated data”, Biometrics, vol. 52, p.512-524.[2]Barlow, W, E and Prentice, R. (1988). “Residuals for relative risk regression”, Biometrika, vol. 75, p.65-74.[3]Brookmeyer, R., and Goedert, J. J. (1989). “Censoring in an epidemic with an application to hemophilia-associated AIDS”, Biometrics, vol. 45, p.325-335.[4]Cox, D. R. (1972). “Regression model and life tables (with discussion)”, Journal of the Royal Statistical Society, Series B, vol. 39, p. 1-38.[5]Crowley, J. and Hu, M. (1977). “Covariance analysis of heart transplant survival data”, Journal of the American Statistical Association, vol. 73, p.27-36.[6]Finkelstein, D. M. (1986). “A proportional hazards model for interval-censored failure time data”, Biometrics, vol. 42, p.845-854.[7]Finkelstein, D. M., Moore, D. F., and Schoenfeld, D. A. (1993). “A proportional hazards model for truncated AIDS data”, Biometrics, vol. 49, p.731-740.[8]Flygare, M. E., Austin, J. A., and Buckwalter, R. M. (1985). “Maximum likelihood estimation for the 2-parameter Weibull distribution based on interval-data”, IEEE transactions on reliability, vol. 34, p.57-59.[9]Frydman, H.(1994). “A note on nonparametric estimation of the distribution function from interval-censored and truncated observations”, Journal of the Royal Statistical Society, Series B, vol. 56, p.71-74.[10]Gentleman, R., and Geyer, C. J. (1994). “Maximun likelihood for interval censored data: consistency and computation”, Biometrika, vol. 81, p.618-623.[11]Klein, J. P., and Moeschberger, M. L. (1997). Survival Analysis. New York: Springer-Verlag.[12]Odell, P. M., Anderson, K. M., and D’Agostino, R. B. (1992). “Maximum likelihood estimation for interval-censored data using a Weibull-based accelerated failure time model”, Biometrics, vol. 48, p.951-959.[13]Pan, W., and Chappell, R. (1998). “Computation of the NPMLE of distribution functions for interval censored and truncated data with applications to the Cox model”, Computational Statistics & Data Analysis, vol. 28, p.33-50.[14]Peto, R. (1973). “Experimental survival curves for interval-censored data”, Applied Statistics, vol. 22, p.86-91.[15]Turnbull, B. W. (1976). “The empirical distribution function with arbitrary grouped, censored and truncated data”, Journal of the Royal Statistical Society, Series B, vol. 38, p.290-295. zh_TW