Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 半折疊解析度Ⅲ之二水準部份因子設計
作者 徐佳琳
貢獻者 丁兆平
徐佳琳
關鍵詞 半折疊
解析度III
部份因子設計
日期 2001
上傳時間 15-Apr-2016 16:10:20 (UTC+8)
摘要 在部份因子設計的領域中,『半折疊設計』(semifolding design)的觀念與技巧在解析度IV的設計裡已有詳盡的介紹與探討,但在解析度III的設計中,到目前為止,卻尚未有詳盡的探討,所以本篇論文主要是針對16-run及32-run解析度III的設計,利用John (2000) 和Li and Mee (2000) 所提的概念與作法,進行半折疊。本論文所建議之半折疊過程為先將原始設計分成二集區,然後再對其中一集區進行折疊。文中將表列最佳分集區的因子組合,並將應用實例與在四種不同的考量下,來對半折疊設計與全折疊設計做一比較。
In the area of the fractional factorial design, the concepts and techniques of semifolding have been developed for resolution IV designs, but they are not yet done for resolution III designs. This paper, however, focuses on 16-run and 32-run resolution III designs. We apply the concepts and techniques of semifolding in John (2000) and Li and Mee (2000) to resolution III designs as they have established for resolution IV designs. The procedure we suggest in doing semifolding in this paper is to block the original design into two sections, and then fold over one section. The “optimal” blocking factors are listed in tables, and the performance of semifolding designs in comparison with that of foldover designs are shown by means of examples.
參考文獻 1. Barnett, J., Czitrom, V., John, P.W.M., and Leon, R.V.(1997). Using Fewer Wafers to Resolve Confounding in Screening Experiments. in Statistical Case Studies for Industrial Process Improvement, eds. V. Czitrom and P.D. Spagon, Philadelphia: SIAM, 235-250.
2. Box, G.E.P., and Hunter, J.S.(1961a). The 2k-p Fractional Factorial Designs, Part I. Technometrics, 3, 311-352.
3. Li, H. and Mee, R.W.(2000). Optimal Foldovers of Designs. Technical Report No.2000-1, Department of Statistics, University of Tennessee.
4. Chen, J., Sun, D.X., and Wu, C.F.J.(1993). A Catalog of Two-Level and Three-Level Fractional Factorial Designs with Small Runs. International Statistical Review, 61, 131-145.
5. Montgomery, D.C.(2001). Design and Analysis of Experiments, 5th ed., John Wiley & Sons, New York, NY.
6. Montgomery, D.C.(1996). Foldovers of 2k-p Resolution Ⅳ Experimental Designs. Journal of Quality Technology, 28, 446-450.
7. John, P.W.M.(2000). Breaking Alias Chains In Fractional Factorials. Communication in Statisticas.—Theory Methods,29 (9?),2143-2155.(2000)
8. Mee, R.W. and Peralta, M.(2000). Semifolding 2k-p Designs. Technometrics, 42, 122-134.
描述 碩士
國立政治大學
統計學系
88354019
資料來源 http://thesis.lib.nccu.edu.tw/record/#A2002001357
資料類型 thesis
dc.contributor.advisor 丁兆平zh_TW
dc.contributor.author (Authors) 徐佳琳zh_TW
dc.creator (作者) 徐佳琳zh_TW
dc.date (日期) 2001en_US
dc.date.accessioned 15-Apr-2016 16:10:20 (UTC+8)-
dc.date.available 15-Apr-2016 16:10:20 (UTC+8)-
dc.date.issued (上傳時間) 15-Apr-2016 16:10:20 (UTC+8)-
dc.identifier (Other Identifiers) A2002001357en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/85144-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計學系zh_TW
dc.description (描述) 88354019zh_TW
dc.description.abstract (摘要) 在部份因子設計的領域中,『半折疊設計』(semifolding design)的觀念與技巧在解析度IV的設計裡已有詳盡的介紹與探討,但在解析度III的設計中,到目前為止,卻尚未有詳盡的探討,所以本篇論文主要是針對16-run及32-run解析度III的設計,利用John (2000) 和Li and Mee (2000) 所提的概念與作法,進行半折疊。本論文所建議之半折疊過程為先將原始設計分成二集區,然後再對其中一集區進行折疊。文中將表列最佳分集區的因子組合,並將應用實例與在四種不同的考量下,來對半折疊設計與全折疊設計做一比較。zh_TW
dc.description.abstract (摘要) In the area of the fractional factorial design, the concepts and techniques of semifolding have been developed for resolution IV designs, but they are not yet done for resolution III designs. This paper, however, focuses on 16-run and 32-run resolution III designs. We apply the concepts and techniques of semifolding in John (2000) and Li and Mee (2000) to resolution III designs as they have established for resolution IV designs. The procedure we suggest in doing semifolding in this paper is to block the original design into two sections, and then fold over one section. The “optimal” blocking factors are listed in tables, and the performance of semifolding designs in comparison with that of foldover designs are shown by means of examples.en_US
dc.description.tableofcontents 封面頁
證明書
致謝詞
論文摘要
目錄
第一章 緒論
第一節:前言與文獻回顧
第二節:研究動機與方向
第三節:本文架構
第二章 名詞解釋
第三章 半折疊設計
第一節:觀念,作法,與24-run設計
第二節:48-run設計
第三節:解析度的迷思
參考文獻
zh_TW
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#A2002001357en_US
dc.subject (關鍵詞) 半折疊zh_TW
dc.subject (關鍵詞) 解析度IIIzh_TW
dc.subject (關鍵詞) 部份因子設計zh_TW
dc.title (題名) 半折疊解析度Ⅲ之二水準部份因子設計zh_TW
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 1. Barnett, J., Czitrom, V., John, P.W.M., and Leon, R.V.(1997). Using Fewer Wafers to Resolve Confounding in Screening Experiments. in Statistical Case Studies for Industrial Process Improvement, eds. V. Czitrom and P.D. Spagon, Philadelphia: SIAM, 235-250.
2. Box, G.E.P., and Hunter, J.S.(1961a). The 2k-p Fractional Factorial Designs, Part I. Technometrics, 3, 311-352.
3. Li, H. and Mee, R.W.(2000). Optimal Foldovers of Designs. Technical Report No.2000-1, Department of Statistics, University of Tennessee.
4. Chen, J., Sun, D.X., and Wu, C.F.J.(1993). A Catalog of Two-Level and Three-Level Fractional Factorial Designs with Small Runs. International Statistical Review, 61, 131-145.
5. Montgomery, D.C.(2001). Design and Analysis of Experiments, 5th ed., John Wiley & Sons, New York, NY.
6. Montgomery, D.C.(1996). Foldovers of 2k-p Resolution Ⅳ Experimental Designs. Journal of Quality Technology, 28, 446-450.
7. John, P.W.M.(2000). Breaking Alias Chains In Fractional Factorials. Communication in Statisticas.—Theory Methods,29 (9?),2143-2155.(2000)
8. Mee, R.W. and Peralta, M.(2000). Semifolding 2k-p Designs. Technometrics, 42, 122-134.
zh_TW