dc.contributor.advisor | 鄭宗記 | zh_TW |
dc.contributor.author (Authors) | 吳秉勳 | zh_TW |
dc.contributor.author (Authors) | David Wu | en_US |
dc.creator (作者) | 吳秉勳 | zh_TW |
dc.creator (作者) | Wu, David | en_US |
dc.date (日期) | 2001 | en_US |
dc.date.accessioned | 15-Apr-2016 16:10:25 (UTC+8) | - |
dc.date.available | 15-Apr-2016 16:10:25 (UTC+8) | - |
dc.date.issued (上傳時間) | 15-Apr-2016 16:10:25 (UTC+8) | - |
dc.identifier (Other Identifiers) | A2002001359 | en_US |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/85146 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 統計學系 | zh_TW |
dc.description (描述) | 87354011 | zh_TW |
dc.description.abstract (摘要) | 在迴歸分析中,當資料中存在很多離群值時,偵測的工作變得非常不容易。 在此狀況下,我們無法使用傳統的殘差分析正確地偵測出其是否存在,此現象稱為遮蔽效應(The Masking Effect)。 而為了避免此效應的發生,我們利用最小中位數穩健迴歸估計值(Least Median Squares Estimator)正確地找出這些群集離群值,此估計值擁有最大即50﹪的容離值 (Breakdown point)。 在這篇論文中,用來求出最小中位數穩健迴歸估計值的演算法稱為步進搜尋演算法 (the Forward Search Algorithm)。 結果顯示,我們可以利用此演算法得到的穩健迴歸估計值,很快並有效率的找出資料中的群集離群值;另外,更進一步的結果顯示,我們只需從資料中隨機選取一百次子集,並進行步進搜尋,即可得到概似的穩健迴歸估計值並正確的找出那些群集離群值。 最後,我們利用鐘乳石圖(Stalactite Plot)列出所有被偵測到的離群值。 | zh_TW |
dc.description.abstract (摘要) | Detecting regression outliers is not trivial when there are many of them. The methods of using classical diagnostic plots sometimes fail to detect them. This phenomenon is known as the masking effect. To avoid this, we propose to find out those multiple outliers by using a highly robust regression estimator called the least median squares (LMS) estimator which has maximal breakdown point. The algorithm in search of the LMS estimator is called the forward search algorithm. The estimator found by the forward search is shown to lead to the rapid detection of multiple outliers. Furthermore, the result reveals that 100 repeats of a simple forward search from a random starting subset are shown to provide sufficiently robust parameter estimators to reveal multiple outliers. Finally, those detected outliers are exhibited by the stalactite plot that shows greatly stable pattern of them. | en_US |
dc.description.tableofcontents | 封面頁證明書致謝詞論文摘要目錄圖目錄表目錄Chapter One Introduction1.1 Research Motivation1.2 Research Purposes1.3 Dissertation Structures1.4 Literature ReviewChapter Two Forward Search Theory2.1 Outliers, LMS and MVE Estimators2.1.1 Leverage Points and Outliers2.1.2 Least Median Squares (LMS) Estimator2.1.3 Minimum Volume Ellipsoid (MVE) Estimator2.2 The Motivation of the Forward Search2.3 Introduction to the Forward Search Algorithm2.3.1 General Principles2.3.2 The Forward Search in Search of LMS Estimator2.3.3 The Forward Search in search of MVE Estimator2.4 Stalactite Plots2.5 Examples2.5.1 Rousseeuw Data2.5.2 Hawkins-Bradu-Kass DataChapter Three Data Transformations3.1 Importance of Normality3.2 Transformations in Regression3.3 Score Statistic for Transformation3.3.1 Added Variable Plot3.3.2 The Derivation of Score Statistic by Added variable3.4 Examples3.4.1 Stack Loss DataChapter Four Empirical Data Analysis4.1 Data Illustration and Outlier Detection4.2 Data Transformation to Improve the ModelChapter Five Conclusions and Suggestions5.1 Research Discoveries5.2 Significance of the Forward Search Algorithm5.3 Future StudyAppendixAppendix A DatasetsAppendix B TerminologiesAppendix C Future StudyReferences | zh_TW |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#A2002001359 | en_US |
dc.subject (關鍵詞) | 容離值 | zh_TW |
dc.subject (關鍵詞) | 最小中位數穩健迴歸估計值 | zh_TW |
dc.subject (關鍵詞) | 遮蔽效應 | zh_TW |
dc.subject (關鍵詞) | 最小體積橢圓體估計值 | zh_TW |
dc.subject (關鍵詞) | Mahalanobis 距離 | zh_TW |
dc.subject (關鍵詞) | 分數統計量 | zh_TW |
dc.subject (關鍵詞) | 鐘乳石圖 | zh_TW |
dc.subject (關鍵詞) | 步進搜尋演算法 | zh_TW |
dc.subject (關鍵詞) | Breakdown Point | en_US |
dc.subject (關鍵詞) | Least Median Square (LMS) Estimator | en_US |
dc.subject (關鍵詞) | The Masking Effect | en_US |
dc.subject (關鍵詞) | Minimum Volume Ellipsoid (MVE) Estimator | en_US |
dc.subject (關鍵詞) | Mahalanobis Distance | en_US |
dc.subject (關鍵詞) | Score Statistic | en_US |
dc.subject (關鍵詞) | Stalactite Plot | en_US |
dc.subject (關鍵詞) | The Forward Search Algorithm | en_US |
dc.title (題名) | 變數轉換之離群值偵測 | zh_TW |
dc.title (題名) | Detection of Outliers with Data Transformation | en_US |
dc.type (資料類型) | thesis | en_US |