Publications-Theses
Article View/Open
Publication Export
-
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
題名 隨機波動下的二元樹狀模型之探討 作者 黃大展 貢獻者 杜化宇
黃大展關鍵詞 隨機波動
樹狀模型
微笑曲線
Stochastic Volatility
Bivariate Tree Model
Volatility Smile日期 2001 上傳時間 18-Apr-2016 16:26:17 (UTC+8) 摘要 自1980年代後期Hull & White、Wiggins、Johnson & Shanno等人相繼發表關於隨機波動度模型的文獻後,就有諸多的文獻對於在選擇權定價中考慮隨機波動度作更深入的分析與模型探討,然而關於隨機波動度的研究,在早期大多採用蒙地卡羅模擬法來分析選擇權的價格行為,但蒙地卡羅模擬法受限於運算效率不高與缺乏彈性,故在評價新奇選擇權,如美式選擇權、障礙選擇權時,並無法應用。故本文以Leisen(2000)的二元樹狀模型出發,探討在不同相關係數及參數設定下之各類選擇權的定價、避險參數及隱含波動度曲面模擬計算等主題。 參考文獻 一、中文部分1.江政憲,「波動性變動選擇權評價模型定價績效之實證比較」,銘傳大學金融研究所碩士論文,1999年6月。2.吳勉賢,「蒙地卡羅模擬法在動態隨機變異模型上的應用」,國立中正大學財務金融研究所碩士論文,2000年6月。3.許博翔,「隨機波動性下之障礙選擇權的評價分析」,國立中央大學財務管理研究所碩士論文,2000年6月。4.陳威光,選擇權-理論,實務與應用,2001年1月初版,智勝出版社。5.曹金泉,「隨機波動度下選擇權評價理論的應用-以台灣認購權證為例」,國立政治大學金融研究所碩士論文,1999年6月。6.傅信彰,「結合隨機波動性和跳躍過程之二項式選擇權定價模型」,國立中央大學財務管理研究所碩士論文,1999年6月。二、英文部分1.Amin, Kaushik and Robert Jarrow. “Pricing Options on Risky Assets in a Stochastic Interest Rate Economy.” Mathematical Finance, Vol. 2 (1992), pp. 217-237.2.Amin, Kaushik and Victor Ng. “Option Valuation with Systematic Stochastic Volatility.” Journal of Finance, Vol. 48 (1993), pp. 881-910.3.Bates, David. “Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutschemark options.” Review of Financial Studies, Vol. 9, (1996), pp. 69-108.4.Boyle, Phelim P. and Sok Hoon Lau. “Bumping Up Against the Barrier with the Binomial Method.” Journal of Derivative, Vol. 1, (1994), pp. 6-14.5.Chesney, M. and L. Scott. “Pricing European Currency Options: A Comparison of the Modified Black-Scholes Model and a Random Variance Model.” Journal of Financial and Quantitative Analysis, Vol. 24, No. 3 (1989), pp. 267-284.6.Duan, Jin-Chuan. “The GARCH Option Pricing Model.” Mathematical Finance, Vol. 5, No. 1 (1995), pp.13-32.7.Garman, Mark. “A General Theory of Asset Valuation Under Diffusion State Processes.” Working Paper No. 50, University of California, Berkley, 1976.8.Leisen, Dietmar P.J. “Stock Evolution under Stochastic Volatility: A Discrete Approach.” The Journal of Derivatives, Vol. 8, No. 2 (Winter 2000), pp. 9-27.9.Heston, Steven. “A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options.” Review of Financial Studies, Vol. 6 (1993), pp. 327-343.10.Hilliard, J. E. and A. Schwartz. “Binomial Option Pricing under Stochastic Volatility and Correlated State Variables.” The Journal of Derivatives, Vol.4, No. 1 (1996), pp. 23-39.11.Hull, John and Alan White. "The Pricing of Options on Assets with Stochastic Volatilities." Journal of Finance, Vol. 42 (1987), pp. 281-300.12.Hull, John. Options, Futures, and Other Derivatives. 3th ed., N.J.:Prentice-Hall.13.Merton, R. C. “Theory of Rational Option Pricing.” Bell Journal of Economics and Management Science, Vol. 4, No. 1 (1973), pp. 141-183.14.Nelson, D. B. and K. Ramaswamy. “Simple Binomial Processes as Diffusion Approximations in Financial Models.” The Review of Financial Studies, Vol. 3 (1990), pp. 393-430.15.Reiner, E. and M. Rubinstein. “Breaking Down the Barriers.” Risk, Vol. 4, No. 8 (1991), pp. 28-35.16.Ritchken, Peter and Rob Trevor. “Pricing Options under Generalized GARCH and Stochastic Volatility Processes.” Journal of Finance, Vol. 54, No. 1 (1999), pp. 377-402.17.Ritchken, Peter, “On Pricing Barrier Option.” The Journal of Derivatives, Vol.3 (Winter 1996 ), pp. 19-28.18.Stein, E. M. and J. C. Stein. “Stock Price Distributions with Stochastic Stochastic Volatility: An Analytic Approach.” The Review of Financial Studies, Vol. 4 (1991), pp. 727-752.19.Wiggins, J.B. “Option Values under Stochastic Volatility: Theory and Empirical Evidence.” Journal of Financial Economics, Vol. 19 (1987), pp. 351-372. 描述 碩士
國立政治大學
財務管理研究所
88357020資料來源 http://thesis.lib.nccu.edu.tw/record/#A2002001563 資料類型 thesis dc.contributor.advisor 杜化宇 zh_TW dc.contributor.author (Authors) 黃大展 zh_TW dc.creator (作者) 黃大展 zh_TW dc.date (日期) 2001 en_US dc.date.accessioned 18-Apr-2016 16:26:17 (UTC+8) - dc.date.available 18-Apr-2016 16:26:17 (UTC+8) - dc.date.issued (上傳時間) 18-Apr-2016 16:26:17 (UTC+8) - dc.identifier (Other Identifiers) A2002001563 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/85353 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 財務管理研究所 zh_TW dc.description (描述) 88357020 zh_TW dc.description.abstract (摘要) 自1980年代後期Hull & White、Wiggins、Johnson & Shanno等人相繼發表關於隨機波動度模型的文獻後,就有諸多的文獻對於在選擇權定價中考慮隨機波動度作更深入的分析與模型探討,然而關於隨機波動度的研究,在早期大多採用蒙地卡羅模擬法來分析選擇權的價格行為,但蒙地卡羅模擬法受限於運算效率不高與缺乏彈性,故在評價新奇選擇權,如美式選擇權、障礙選擇權時,並無法應用。故本文以Leisen(2000)的二元樹狀模型出發,探討在不同相關係數及參數設定下之各類選擇權的定價、避險參數及隱含波動度曲面模擬計算等主題。 zh_TW dc.description.tableofcontents 封面頁證明書致謝詞論文摘要目錄表目錄圖目錄第壹章 緒論第一節 研究背景與動機第二節 研究問題與目的第三節 論文架構與究流程第貳章 文獻回顧第一節 國外文獻回顧第二節 國內文獻回顧第參章 研究方法第一節 Leisen二元樹狀模型基本假設第二節 股價狀態空間建構第三節 機率空間之建構第肆章 模擬結果與分析第一節 Leisen二元樹狀模型的收斂情形與運算效率第二節 Leisen二元樹狀模型與B-S模型的誤差比較第三節 Leisen二元樹狀模型的隱含波動度曲面第四節 不同波動係數下的二元樹狀模型價格行為第五節 Leisen二元樹狀模型下的避險參數分析第六節 Leisen二元樹狀模型應用於美式選擇權定價第七節 Leisen二元樹狀模型應用於障礙選擇權定價第伍章 結論與建議第一節 研究結論第二節 對後續研究者的建議參考文獻附錄 障礙選擇權補充 zh_TW dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#A2002001563 en_US dc.subject (關鍵詞) 隨機波動 zh_TW dc.subject (關鍵詞) 樹狀模型 zh_TW dc.subject (關鍵詞) 微笑曲線 zh_TW dc.subject (關鍵詞) Stochastic Volatility en_US dc.subject (關鍵詞) Bivariate Tree Model en_US dc.subject (關鍵詞) Volatility Smile en_US dc.title (題名) 隨機波動下的二元樹狀模型之探討 zh_TW dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) 一、中文部分1.江政憲,「波動性變動選擇權評價模型定價績效之實證比較」,銘傳大學金融研究所碩士論文,1999年6月。2.吳勉賢,「蒙地卡羅模擬法在動態隨機變異模型上的應用」,國立中正大學財務金融研究所碩士論文,2000年6月。3.許博翔,「隨機波動性下之障礙選擇權的評價分析」,國立中央大學財務管理研究所碩士論文,2000年6月。4.陳威光,選擇權-理論,實務與應用,2001年1月初版,智勝出版社。5.曹金泉,「隨機波動度下選擇權評價理論的應用-以台灣認購權證為例」,國立政治大學金融研究所碩士論文,1999年6月。6.傅信彰,「結合隨機波動性和跳躍過程之二項式選擇權定價模型」,國立中央大學財務管理研究所碩士論文,1999年6月。二、英文部分1.Amin, Kaushik and Robert Jarrow. “Pricing Options on Risky Assets in a Stochastic Interest Rate Economy.” Mathematical Finance, Vol. 2 (1992), pp. 217-237.2.Amin, Kaushik and Victor Ng. “Option Valuation with Systematic Stochastic Volatility.” Journal of Finance, Vol. 48 (1993), pp. 881-910.3.Bates, David. “Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutschemark options.” Review of Financial Studies, Vol. 9, (1996), pp. 69-108.4.Boyle, Phelim P. and Sok Hoon Lau. “Bumping Up Against the Barrier with the Binomial Method.” Journal of Derivative, Vol. 1, (1994), pp. 6-14.5.Chesney, M. and L. Scott. “Pricing European Currency Options: A Comparison of the Modified Black-Scholes Model and a Random Variance Model.” Journal of Financial and Quantitative Analysis, Vol. 24, No. 3 (1989), pp. 267-284.6.Duan, Jin-Chuan. “The GARCH Option Pricing Model.” Mathematical Finance, Vol. 5, No. 1 (1995), pp.13-32.7.Garman, Mark. “A General Theory of Asset Valuation Under Diffusion State Processes.” Working Paper No. 50, University of California, Berkley, 1976.8.Leisen, Dietmar P.J. “Stock Evolution under Stochastic Volatility: A Discrete Approach.” The Journal of Derivatives, Vol. 8, No. 2 (Winter 2000), pp. 9-27.9.Heston, Steven. “A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options.” Review of Financial Studies, Vol. 6 (1993), pp. 327-343.10.Hilliard, J. E. and A. Schwartz. “Binomial Option Pricing under Stochastic Volatility and Correlated State Variables.” The Journal of Derivatives, Vol.4, No. 1 (1996), pp. 23-39.11.Hull, John and Alan White. "The Pricing of Options on Assets with Stochastic Volatilities." Journal of Finance, Vol. 42 (1987), pp. 281-300.12.Hull, John. Options, Futures, and Other Derivatives. 3th ed., N.J.:Prentice-Hall.13.Merton, R. C. “Theory of Rational Option Pricing.” Bell Journal of Economics and Management Science, Vol. 4, No. 1 (1973), pp. 141-183.14.Nelson, D. B. and K. Ramaswamy. “Simple Binomial Processes as Diffusion Approximations in Financial Models.” The Review of Financial Studies, Vol. 3 (1990), pp. 393-430.15.Reiner, E. and M. Rubinstein. “Breaking Down the Barriers.” Risk, Vol. 4, No. 8 (1991), pp. 28-35.16.Ritchken, Peter and Rob Trevor. “Pricing Options under Generalized GARCH and Stochastic Volatility Processes.” Journal of Finance, Vol. 54, No. 1 (1999), pp. 377-402.17.Ritchken, Peter, “On Pricing Barrier Option.” The Journal of Derivatives, Vol.3 (Winter 1996 ), pp. 19-28.18.Stein, E. M. and J. C. Stein. “Stock Price Distributions with Stochastic Stochastic Volatility: An Analytic Approach.” The Review of Financial Studies, Vol. 4 (1991), pp. 727-752.19.Wiggins, J.B. “Option Values under Stochastic Volatility: Theory and Empirical Evidence.” Journal of Financial Economics, Vol. 19 (1987), pp. 351-372. zh_TW