Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 族群達到哈溫比例及芮特比例的交配系統之整合性研究
A Comprehensive Study of Mating Systems of a Population Attaining Hardy-Weinberg Proportions and Wright Proportions
作者 黃崑明
Huang, Kuen-Ming
貢獻者 戴政
John Jen Tai
黃崑明
Kuen-Ming Huang
關鍵詞 交配系統
哈溫比例
芮特比例
mating systems
Hardy-Weinberg proportions
Wright proportions
日期 1998
上傳時間 21-Apr-2016 09:55:02 (UTC+8)
摘要 在族群遺傳學中已知有許多因子影響基因型與對偶基因頻率,族群的交配方式即為其中之一。例如,哈溫平衡定律即指族群進行隨機交配,而芮特平衡定律所描述之自交系理論指的是族群進行了某種特定型式的非隨機交配。本文將以往討論過或未討論過之族群基因型頻率會達到哈溫比例及芮特比例的交配系統做一整合性研究。族群基因型頻率會達到哈溫比例或芮特比例之交配系統的整體架構將根據交配群體中雙親二子群體的交配行為、基因型頻率是否在哈溫比例及是否相同、對偶基因頻率是否相同來建立。整體架構中的每一構造點所對應的交配系統將被找出或證明不存在,若存在則會進一步討論其特性。
In population genetics it is known that there are many factors that may affect the genotypic and gene distributions of a population. The type of mating of a population is one of them. For examples, basically Hardy-Weinberg equilibrium law refers to a population undergoing random mating, and Wright`s equilibrium law in inbreeding refers to a special type of nonrandom mating. This study performs a comprehensive investigation of all possible matings that can attain Hardy-Weinberg proportions or Wright proportions that had been or not had been discussed previously. The framework of mating systems attaining the Hardy-Weinberg proportions or Wright proportions will be established on the basis of pooling together factors such as the mating behavior, gene frequencies, genotypic frequencies and the Hardy-Weinberg proportions of the male and female subpopulations. The type and property of each mating system corresponding to each point of the established mating system framework are examined.
參考文獻 Falconer, D. S., (1989) Introduction to Quantitative Genetics. 3rd Edition, John Wiley & Sons, Inc., New York.
Haldane, J. B. S., and Moshinsky, P. (1939) "Inbreeding in Medelian populations with special reference to human cousin marriage. Ann. Eugen. 9, 321-340.
Hardy, G. H. (1908) "Mendelian proportions in a mixed population." Science, 28, 49-50.
Li, C. C. and Sacks, L. (1954) "The derivation of joint distribution and correlation between relatives by the use of stochastic matrices." Biometrics, 10, 347-360.
Li, C. C. (1988a) First Course in Population Genetics. Boxwood Press, Pacific Grove, California.
Li, C. C. (1988b) "Pseudo-Random Mating Population. In Celebration of the 80th Anniversary of the Hardy-Weinberg Law." Genetics, 119, 731-737.
Li, C. C. and Weeks D. E. and Chakravarti A. (1992) "Similarity of DNA fingerprints due to chance and relatedness. Human Heredity, 43, 45-52.
Malecot, G. (1948) Les Mathematiques de l`beredite. Paris: Masson et Cie (translated by D.M. Yermanos, 1969, San Francisco: Freeman).
Tai, J. J. (1990a) "On Nonrandom Mating Systems for Attaining Hardy-Weinberg Equilibrium." Biometrical Journal, 32, 1005-1014.
Tai, J. J. (1990b) "Pseudo-random Mating Systems for 3-allele Loci." Proc. Nat. Sci. Coun. B R.O.C., 14, 122-130.
Tai, J. J. and Liu J. (1996) "A Two-Stage Test for Distinguishing Random, Psudo-Random and Nonrandom Mating Population." Biometrical Journal, 38, 717-724.
Weinberg, W. (1908) "Uber den Nachweis der Verebung beim Menschen. Jahresh. Verein f. vaterl." Naturk. In Wruttemberg 64, 368-382.
Wright, S. (1921) "Systems of mating, I-V." Genetics 6, 111-178.
Wright, S. (1922) "Coefficients of inbreeding and relationship." Amer. Natur. 56, 330-338.
描述 博士
國立政治大學
統計學系
81354502
資料來源 http://thesis.lib.nccu.edu.tw/record/#B2002001560
資料類型 thesis
dc.contributor.advisor 戴政zh_TW
dc.contributor.advisor John Jen Taien_US
dc.contributor.author (Authors) 黃崑明zh_TW
dc.contributor.author (Authors) Kuen-Ming Huangen_US
dc.creator (作者) 黃崑明zh_TW
dc.creator (作者) Huang, Kuen-Mingen_US
dc.date (日期) 1998en_US
dc.date.accessioned 21-Apr-2016 09:55:02 (UTC+8)-
dc.date.available 21-Apr-2016 09:55:02 (UTC+8)-
dc.date.issued (上傳時間) 21-Apr-2016 09:55:02 (UTC+8)-
dc.identifier (Other Identifiers) B2002001560en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/85889-
dc.description (描述) 博士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計學系zh_TW
dc.description (描述) 81354502zh_TW
dc.description.abstract (摘要) 在族群遺傳學中已知有許多因子影響基因型與對偶基因頻率,族群的交配方式即為其中之一。例如,哈溫平衡定律即指族群進行隨機交配,而芮特平衡定律所描述之自交系理論指的是族群進行了某種特定型式的非隨機交配。本文將以往討論過或未討論過之族群基因型頻率會達到哈溫比例及芮特比例的交配系統做一整合性研究。族群基因型頻率會達到哈溫比例或芮特比例之交配系統的整體架構將根據交配群體中雙親二子群體的交配行為、基因型頻率是否在哈溫比例及是否相同、對偶基因頻率是否相同來建立。整體架構中的每一構造點所對應的交配系統將被找出或證明不存在,若存在則會進一步討論其特性。zh_TW
dc.description.abstract (摘要) In population genetics it is known that there are many factors that may affect the genotypic and gene distributions of a population. The type of mating of a population is one of them. For examples, basically Hardy-Weinberg equilibrium law refers to a population undergoing random mating, and Wright`s equilibrium law in inbreeding refers to a special type of nonrandom mating. This study performs a comprehensive investigation of all possible matings that can attain Hardy-Weinberg proportions or Wright proportions that had been or not had been discussed previously. The framework of mating systems attaining the Hardy-Weinberg proportions or Wright proportions will be established on the basis of pooling together factors such as the mating behavior, gene frequencies, genotypic frequencies and the Hardy-Weinberg proportions of the male and female subpopulations. The type and property of each mating system corresponding to each point of the established mating system framework are examined.en_US
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#B2002001560en_US
dc.subject (關鍵詞) 交配系統zh_TW
dc.subject (關鍵詞) 哈溫比例zh_TW
dc.subject (關鍵詞) 芮特比例zh_TW
dc.subject (關鍵詞) mating systemsen_US
dc.subject (關鍵詞) Hardy-Weinberg proportionsen_US
dc.subject (關鍵詞) Wright proportionsen_US
dc.title (題名) 族群達到哈溫比例及芮特比例的交配系統之整合性研究zh_TW
dc.title (題名) A Comprehensive Study of Mating Systems of a Population Attaining Hardy-Weinberg Proportions and Wright Proportionsen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) Falconer, D. S., (1989) Introduction to Quantitative Genetics. 3rd Edition, John Wiley & Sons, Inc., New York.
Haldane, J. B. S., and Moshinsky, P. (1939) "Inbreeding in Medelian populations with special reference to human cousin marriage. Ann. Eugen. 9, 321-340.
Hardy, G. H. (1908) "Mendelian proportions in a mixed population." Science, 28, 49-50.
Li, C. C. and Sacks, L. (1954) "The derivation of joint distribution and correlation between relatives by the use of stochastic matrices." Biometrics, 10, 347-360.
Li, C. C. (1988a) First Course in Population Genetics. Boxwood Press, Pacific Grove, California.
Li, C. C. (1988b) "Pseudo-Random Mating Population. In Celebration of the 80th Anniversary of the Hardy-Weinberg Law." Genetics, 119, 731-737.
Li, C. C. and Weeks D. E. and Chakravarti A. (1992) "Similarity of DNA fingerprints due to chance and relatedness. Human Heredity, 43, 45-52.
Malecot, G. (1948) Les Mathematiques de l`beredite. Paris: Masson et Cie (translated by D.M. Yermanos, 1969, San Francisco: Freeman).
Tai, J. J. (1990a) "On Nonrandom Mating Systems for Attaining Hardy-Weinberg Equilibrium." Biometrical Journal, 32, 1005-1014.
Tai, J. J. (1990b) "Pseudo-random Mating Systems for 3-allele Loci." Proc. Nat. Sci. Coun. B R.O.C., 14, 122-130.
Tai, J. J. and Liu J. (1996) "A Two-Stage Test for Distinguishing Random, Psudo-Random and Nonrandom Mating Population." Biometrical Journal, 38, 717-724.
Weinberg, W. (1908) "Uber den Nachweis der Verebung beim Menschen. Jahresh. Verein f. vaterl." Naturk. In Wruttemberg 64, 368-382.
Wright, S. (1921) "Systems of mating, I-V." Genetics 6, 111-178.
Wright, S. (1922) "Coefficients of inbreeding and relationship." Amer. Natur. 56, 330-338.
zh_TW