Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 自變數增加對岭估計的影響分析
作者 萬世卿
Wan, Shin Chin
貢獻者 宋傳欽
萬世卿
Wan, Shin Chin
關鍵詞 岭估計
共線性
Cook統計量
AP統計量
Kullback-Leibler 對稱散度
變異膨脹因子
廣義變異膨脹因子
Ridge regression
日期 1998
上傳時間 27-Apr-2016 11:15:10 (UTC+8)
摘要   在最小平方估計中,當自變數間有共線性關係時,參數估計的變異變大,使得參數估計值不穩定。解決共線性對參數估計所造成影響的方法有很多,岭估計就是其中之一。在岭估計中,為了偵測出對岭估計有影響力的自變數,本文仿照Schall-Dunne的處理方式,推導出類似的Cook統計量及AP估計量,並且提出以Kullback-Leibler對稱散度來偵測對岭估計有影響力自變數。最後用"加拿大金融市場"與"員工對主管滿意度調查"的兩個實例,來說明本文所提出對岭估計有影響力自變數之偵測方法。
參考文獻 參考文獻
     [1] Andrews, D. F., and Pregibon, D.(1978),"Finding the Outliers That Matter,"Journal of The Royal Statistical Society, Ser. B, 40, 85-93.
     [2] Cook, R. D.(1977),"Detection of Influential Observations in Regression,"Technometrics, 19, 15-18.
     [3] Draper, N. R. and John, J. A.(1981),"Influential Observations and Outliers in Regression,"Technometrics, 23, 21-26.
     [4] Fox, J. and Monette, G.(1992),"Generalized Collinearity Diagnostics,"Journal of The American Statistical Association, 87, 178-183.
     [5] Graybill, F. A.(1976), Theory and Applications of the Linear Model, Duxbury, North Scitutate, Mass.
     [6] Hald, A.(1652), Statistical Theory With Engineering Applications, Wiley, new York.
     [7] Hoerl, A. E. and Kennard, R.W.(1970 a),"Ridge regression: Biased estimation for nonorthogonal problems,"Technometrics, 12, 55-67.
     [8] Hoerl, A. E. and Kennard, R.W.(1970 b),"Ridge regression: Applications to nonorthogonal problems," Technometrics, 12, 69-82.
     [9] Johnson, W. and Geisser, S.(1983),"A Predictive View of the Detection and Characterization of Influential Observations in Regression Analysis,"Journal of The American Statistical Association, 78, 137-144.
     [10] Jobson, J. D.(1991), Applied Multivariate Data Analysis Volume Ⅰ: Regression and Experimental Design, Academic: New York.
     [11] Kullback, S. and Leibler, R. A.(1951),"On Information and Sufficiency,"Annals of Mathematical Statistics, 22, 79-86.
     [12] Montgonery, D. C. and Peck, E. A.(1992), Introduction to Linear Regression Analysis (2nd ed), Academic: New York.
     [13] Schall, R. and Dunne, T. T.(1990),"Influential Variables in Linear Regression,"Technometrics, 32, 323-330.
     [14] Sen, A. K. and Srivastava, M. S.(1990), Regression Analysis Theory, Methods, and Applications, Academic: New York.
     [15] 岳榮先(1991),"有偏估計的影響分析",中國統計學報,第29卷第2期,219-231.
描述 碩士
國立政治大學
應用數學系
86751011
資料來源 http://thesis.lib.nccu.edu.tw/record/#B2002001693
資料類型 thesis
dc.contributor.advisor 宋傳欽zh_TW
dc.contributor.author (Authors) 萬世卿zh_TW
dc.contributor.author (Authors) Wan, Shin Chinen_US
dc.creator (作者) 萬世卿zh_TW
dc.creator (作者) Wan, Shin Chinen_US
dc.date (日期) 1998en_US
dc.date.accessioned 27-Apr-2016 11:15:10 (UTC+8)-
dc.date.available 27-Apr-2016 11:15:10 (UTC+8)-
dc.date.issued (上傳時間) 27-Apr-2016 11:15:10 (UTC+8)-
dc.identifier (Other Identifiers) B2002001693en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/86270-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學系zh_TW
dc.description (描述) 86751011zh_TW
dc.description.abstract (摘要)   在最小平方估計中,當自變數間有共線性關係時,參數估計的變異變大,使得參數估計值不穩定。解決共線性對參數估計所造成影響的方法有很多,岭估計就是其中之一。在岭估計中,為了偵測出對岭估計有影響力的自變數,本文仿照Schall-Dunne的處理方式,推導出類似的Cook統計量及AP估計量,並且提出以Kullback-Leibler對稱散度來偵測對岭估計有影響力自變數。最後用"加拿大金融市場"與"員工對主管滿意度調查"的兩個實例,來說明本文所提出對岭估計有影響力自變數之偵測方法。zh_TW
dc.description.tableofcontents 謝詞
     摘要
     目錄
     第一章緒論-----1
       第一節:前言-----1
       第二節:本文架構-----2
     第二章 線性迴歸模型中偵測有影響力的自變數-文獻回顧-----3
       第一節:有影響力的個變數-----3
       第二節:廣義變異膨脹因子-----5
       第三節:Cook統計量-----7
       第四節:AP統計量-----9
     第三章 對岭估計有影響力的自變數之偵測-----11
       第一節:岭估計的介紹-----11
       第二節:偵測對岭估計有影響力自變數的Cook統計量-----12
       第三節:偵測對岭估計有影響力自變數的AP統計量-----15
       第四節:以Kullback-Leilber對稱散度偵測對岭估計有影響力的自變數-----17
     第四章 實例分析-----20
       第一節:實例說明與分析-----20
       第二節:結論-----25
     參考文獻-----37
     附錄-----39
zh_TW
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#B2002001693en_US
dc.subject (關鍵詞) 岭估計zh_TW
dc.subject (關鍵詞) 共線性zh_TW
dc.subject (關鍵詞) Cook統計量zh_TW
dc.subject (關鍵詞) AP統計量zh_TW
dc.subject (關鍵詞) Kullback-Leibler 對稱散度zh_TW
dc.subject (關鍵詞) 變異膨脹因子zh_TW
dc.subject (關鍵詞) 廣義變異膨脹因子zh_TW
dc.subject (關鍵詞) Ridge regressionen_US
dc.title (題名) 自變數增加對岭估計的影響分析zh_TW
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 參考文獻
     [1] Andrews, D. F., and Pregibon, D.(1978),"Finding the Outliers That Matter,"Journal of The Royal Statistical Society, Ser. B, 40, 85-93.
     [2] Cook, R. D.(1977),"Detection of Influential Observations in Regression,"Technometrics, 19, 15-18.
     [3] Draper, N. R. and John, J. A.(1981),"Influential Observations and Outliers in Regression,"Technometrics, 23, 21-26.
     [4] Fox, J. and Monette, G.(1992),"Generalized Collinearity Diagnostics,"Journal of The American Statistical Association, 87, 178-183.
     [5] Graybill, F. A.(1976), Theory and Applications of the Linear Model, Duxbury, North Scitutate, Mass.
     [6] Hald, A.(1652), Statistical Theory With Engineering Applications, Wiley, new York.
     [7] Hoerl, A. E. and Kennard, R.W.(1970 a),"Ridge regression: Biased estimation for nonorthogonal problems,"Technometrics, 12, 55-67.
     [8] Hoerl, A. E. and Kennard, R.W.(1970 b),"Ridge regression: Applications to nonorthogonal problems," Technometrics, 12, 69-82.
     [9] Johnson, W. and Geisser, S.(1983),"A Predictive View of the Detection and Characterization of Influential Observations in Regression Analysis,"Journal of The American Statistical Association, 78, 137-144.
     [10] Jobson, J. D.(1991), Applied Multivariate Data Analysis Volume Ⅰ: Regression and Experimental Design, Academic: New York.
     [11] Kullback, S. and Leibler, R. A.(1951),"On Information and Sufficiency,"Annals of Mathematical Statistics, 22, 79-86.
     [12] Montgonery, D. C. and Peck, E. A.(1992), Introduction to Linear Regression Analysis (2nd ed), Academic: New York.
     [13] Schall, R. and Dunne, T. T.(1990),"Influential Variables in Linear Regression,"Technometrics, 32, 323-330.
     [14] Sen, A. K. and Srivastava, M. S.(1990), Regression Analysis Theory, Methods, and Applications, Academic: New York.
     [15] 岳榮先(1991),"有偏估計的影響分析",中國統計學報,第29卷第2期,219-231.
zh_TW