dc.contributor.advisor | 李明融 | zh_TW |
dc.contributor.advisor | Li, Meng-Rong | en_US |
dc.contributor.author (Authors) | 林俊宏 | zh_TW |
dc.contributor.author (Authors) | Lin, Jiunn-Hon | en_US |
dc.creator (作者) | 林俊宏 | zh_TW |
dc.creator (作者) | Lin, Jiunn-Hon | en_US |
dc.date (日期) | 1998 | en_US |
dc.date.accessioned | 27-Apr-2016 16:43:12 (UTC+8) | - |
dc.date.available | 27-Apr-2016 16:43:12 (UTC+8) | - |
dc.date.issued (上傳時間) | 27-Apr-2016 16:43:12 (UTC+8) | - |
dc.identifier (Other Identifiers) | B2002001689 | en_US |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/86784 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 應用數學系 | zh_TW |
dc.description (描述) | 86751012 | zh_TW |
dc.description.abstract (摘要) | 本研究中討論了非線性微分方程式之解的正則性。在這之中發現了一些有趣的現象,得到了方程式解可以做任意次的微分,並且得到對該解任意次微分後其值趨近到無限大時之爆破速率、爆破常數及當其值遞減至零時的爆破速率、爆破常數。 | zh_TW |
dc.description.abstract (摘要) | In this paper we work with the regularity of solutions for the non-linear ordinary differential equation u``-u^p=0 for some well-defined functions u^p. We have found some interesting phenomena, u belongs to C^q for any q in positive integer, blow-up constant, blow-up rate, null point and decay rate of u^(n) are obtained in this work, through that we get the characterization for these equations in this case. | en_US |
dc.description.abstract (摘要) | Introduction. Chapter 0 The Calligraphy Equation. Chapter I The Equation u``-u^p=0, p belogns to positive integer. Chapter II The Equation u``-u^p=0, p belongs to rational number. Chapter III The Blow-up Rate and Blow-up Constant. Appendix Proof of Theorem 5. | - |
dc.description.tableofcontents | Introduction. Chapter 0 The Calligraphy Equation. Chapter I The Equation u``-u^p=0, p belogns to positive integer. Chapter II The Equation u``-u^p=0, p belongs to rational number. Chapter III The Blow-up Rate and Blow-up Constant. Appendix Proof of Theorem 5. | zh_TW |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#B2002001689 | en_US |
dc.subject (關鍵詞) | 微分方程 | zh_TW |
dc.subject (關鍵詞) | 正則性 | zh_TW |
dc.subject (關鍵詞) | 爆破 | zh_TW |
dc.subject (關鍵詞) | 爆破速率 | zh_TW |
dc.subject (關鍵詞) | differential equation | en_US |
dc.subject (關鍵詞) | regularity | en_US |
dc.subject (關鍵詞) | blow-up | en_US |
dc.subject (關鍵詞) | blow-up rate | en_US |
dc.title (題名) | 關於非線性微分方程的正則性 | zh_TW |
dc.title (題名) | The Regularity of Solutions for Non-linear Differential Equation u`` - u^p = 0 | en_US |
dc.type (資料類型) | thesis | en_US |
dc.relation.reference (參考文獻) | [1].Bellman. R. Stability Theory Of Differential Equation.McGraw-Hill Book Company. 1953. [2].Li, M. R. Nichtlineare Wellengleichungen 2. Ordnung auf beschraenkten Gebieten. PhD-Dissertation Tuebingen 1994. [3].Li, M. R. Estimation for The Life-span of solutions forSemi-linear Wave Equations. Proceedings of the Workshop on Differential Equations V. Jan.10-11,1997, National Tsing-hua Uni. Hsinchu, Taiwan. [4].Li, M. R. On the Differential Equation u``=u^p, Preprint, 1998. | zh_TW |