dc.contributor.advisor | 張宜武 | zh_TW |
dc.contributor.author (Authors) | 呂吉祥 | zh_TW |
dc.creator (作者) | 呂吉祥 | zh_TW |
dc.date (日期) | 1996 | en_US |
dc.date.accessioned | 28-Apr-2016 09:56:01 (UTC+8) | - |
dc.date.available | 28-Apr-2016 09:56:01 (UTC+8) | - |
dc.date.issued (上傳時間) | 28-Apr-2016 09:56:01 (UTC+8) | - |
dc.identifier (Other Identifiers) | B2002002524 | en_US |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/87108 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 應用數學系 | zh_TW |
dc.description (描述) | 84751012 | zh_TW |
dc.description.abstract (摘要) | A multiple-star representation of a simple graph G assigns each vertex a union of stars in a host tree, such that vertices are adjacent if and only if their assigned sets intersect. The total star number S(G) is the minimum of the total number of stars used in any such representation of G. We obtain the maximum value of S(G) for m-edge connected graphs: m + 1, n-vertex graphs: [n<sup>2</sup> + 1)/ 4], and n-vertex outer-planar graphs: [3n /2-l] | en_US |
dc.description.tableofcontents | 0 INTRODUCTION-----1 1 S(G) OF SOME EXAMPLES-----5 1.1 Some graphs with S(G) = n-----5 1.2 Some graphs with S(G) > n-----7 2 EXTREMAL PROBLEMS FOR TOTAL STAR NUMBER-----12 2.1 Graphs with m edges-----12 2.2 Graphs on n vertices-----14 3 OUTER-PLANAR GRAPHS ON n VERTICES-----18 Appendix A Comparison table-----23 REFERENCE-----24 | zh_TW |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#B2002002524 | en_US |
dc.subject (關鍵詞) | Multiple-star representation | en_US |
dc.subject (關鍵詞) | Total star number | en_US |
dc.title (題名) | 圖的全星數 | zh_TW |
dc.title (題名) | The total star number of graphs | en_US |
dc.type (資料類型) | thesis | en_US |