dc.contributor.advisor | 鄭天澤 | zh_TW |
dc.contributor.author (Authors) | 曾能芳 | zh_TW |
dc.contributor.author (Authors) | Chan, Lan Fun | en_US |
dc.creator (作者) | 曾能芳 | zh_TW |
dc.creator (作者) | Chan, Lan Fun | en_US |
dc.date (日期) | 1996 | en_US |
dc.date.accessioned | 28-Apr-2016 11:48:22 (UTC+8) | - |
dc.date.available | 28-Apr-2016 11:48:22 (UTC+8) | - |
dc.date.issued (上傳時間) | 28-Apr-2016 11:48:22 (UTC+8) | - |
dc.identifier (Other Identifiers) | B2002002785 | en_US |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/87300 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 統計學系 | zh_TW |
dc.description (描述) | 82354003 | zh_TW |
dc.description.abstract (摘要) | The use of transformation can usually simplify the analysis of data, especiallywhen the original observations deviate from the underlying assumption of linearmodel. Box-Cox transformation receives much more attention than others. Inthis dissertation, we will review the theory about the estimation, hypotheses test on transformation parameter and about the sensitivity of the linear model parameters. Monte Carlo simulation is used to study the performance of the transformation. We also display whether Box-Cox transformation makes the transformed observations satisfy the assumption of linear model actually. | en_US |
dc.description.tableofcontents | 謝辭AbstractCONTENTSChapter 1 INTRODUCTION-----1Chapter 2 POWER TRANSFORMATION-----3 2.1 Estimation of λ-----3 2.1.1 Box-Cox method-----3 2.1.2 Atkinson`s method-----4 2.2 Asymptotic properties of λ, θ(λ) and σ(λ)-----6 2.3 Hypotheses tests about λ-----6 2.3.1 Likelihood ratio test-----7t 2.3.2 The scores test-----7 2.3.3 Andrews`s test-----8 2.4 Randomness of λ-----9 2.4.1 λ regarded as random-----10 2.4.2 λ regarded as fixed-----12Chapter 3 SENSITIVITY FOR LINEAR MODEL PARAMETER-----14 3.1 Stability for contrast parameter-----15 3.2 Sensitivity for location parameter-----17 3.3 Simulation-----19Chapter 4 TRANSFORMATION TO SYMMETRY-----25 4.1 Skewness of yi(λ) with non-normal distribution-----25 4.2 Precision of the normal-theory estimate λN-----26 4.3 Estimate of new λ to symmetry-----27Chapter 5 CONCLUSION-----30APPENDIX A Asymptotic maximum likelihood theory-----32APPENDIX B Normal-theory maximum likelihood-----34REFERENCE-----35 | zh_TW |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#B2002002785 | en_US |
dc.subject (關鍵詞) | 強力轉換 | zh_TW |
dc.subject (關鍵詞) | 常態化轉換 | zh_TW |
dc.subject (關鍵詞) | 架構變數 | zh_TW |
dc.subject (關鍵詞) | 分數檢定 | zh_TW |
dc.subject (關鍵詞) | 敏感性 | zh_TW |
dc.subject (關鍵詞) | power transformation | en_US |
dc.subject (關鍵詞) | normalized transformation | en_US |
dc.subject (關鍵詞) | constructed variable | en_US |
dc.subject (關鍵詞) | scores test | en_US |
dc.subject (關鍵詞) | Andrews`s exact test | en_US |
dc.subject (關鍵詞) | sensitivity | en_US |
dc.title (題名) | The Box-Cox 依變數轉換之技巧 | zh_TW |
dc.title (題名) | The Box-Cox Transformation: A Review | en_US |
dc.type (資料類型) | thesis | en_US |