Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 一個組合等式的證明
A Proof of Combinatorial Identity
作者 陳建霖
Chen, Chien-Lin
貢獻者 李陽明
Li, Young-Ming
陳建霖
Chen, Chien-Lin
關鍵詞 對射函數
組合等式
日期 1996
上傳時間 28-Apr-2016 13:30:03 (UTC+8)
摘要 在這篇論文中,我們主要是研究一個組合等式如下:∑_(i=0)^n▒∑_(j=0)^i▒〖C(n,i)C(n+1,j)=?〗
In this paper, we will mainly study a combinatorial identity, as the following:∑_(i=0)^n▒∑_(j=0)^i▒〖C(n,i)C(n+1,j)=?〗. When solving this identity, we will not use common calculation. Instead, we will build a method of bijective function in order to obtain the solution to the above identity.
參考文獻 [1] A. Tucker, Applied Combinatorics, Second Edition, John Wiley & Sons, New York, 1984.
     [2] C. L. Lin, Introduction to Combinatorial mathematics, .N1cGrawHill, New York, 1968.
     [3] D. Cohen, Basic Techniques of Combinatorial Theory, John Wiley & Sons, New York, 1978.
     [4] F. Roberts, Applied Combinatorics, Prentice-Hall, Englewood Cliffs, N. J. , 1984.
     [5] M. Jantzen, Confluent String Rewriting, Springer-Verlag, New York, 1988.
     [6] R. P. Grimaldi, Discrete and Combinatorial Mathematics, Third Edition, Addison-Wesley, 1994.
     [7] R. Bogart, Introductory Combinatorics, North Holland, New York, 1984.
描述 碩士
國立政治大學
應用數學系
83751008
資料來源 http://thesis.lib.nccu.edu.tw/record/#B2002002894
資料類型 thesis
dc.contributor.advisor 李陽明zh_TW
dc.contributor.advisor Li, Young-Mingen_US
dc.contributor.author (Authors) 陳建霖zh_TW
dc.contributor.author (Authors) Chen, Chien-Linen_US
dc.creator (作者) 陳建霖zh_TW
dc.creator (作者) Chen, Chien-Linen_US
dc.date (日期) 1996en_US
dc.date.accessioned 28-Apr-2016 13:30:03 (UTC+8)-
dc.date.available 28-Apr-2016 13:30:03 (UTC+8)-
dc.date.issued (上傳時間) 28-Apr-2016 13:30:03 (UTC+8)-
dc.identifier (Other Identifiers) B2002002894en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/87369-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學系zh_TW
dc.description (描述) 83751008zh_TW
dc.description.abstract (摘要) 在這篇論文中,我們主要是研究一個組合等式如下:∑_(i=0)^n▒∑_(j=0)^i▒〖C(n,i)C(n+1,j)=?〗zh_TW
dc.description.abstract (摘要) In this paper, we will mainly study a combinatorial identity, as the following:∑_(i=0)^n▒∑_(j=0)^i▒〖C(n,i)C(n+1,j)=?〗. When solving this identity, we will not use common calculation. Instead, we will build a method of bijective function in order to obtain the solution to the above identity.en_US
dc.description.tableofcontents 中文摘要 1
     ABSTRACT 2
     CHAPET 1 INTRODUCTION 3
     CHAPET 2 A COMBINATORIAL PROOF 5
     CHAPET 3 GENERALIZATION 11
     CHAPET 4 CONCLUSION 15
     APPENDIX 16
     REFERENCES 20
zh_TW
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#B2002002894en_US
dc.subject (關鍵詞) 對射函數zh_TW
dc.subject (關鍵詞) 組合等式zh_TW
dc.title (題名) 一個組合等式的證明zh_TW
dc.title (題名) A Proof of Combinatorial Identityen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] A. Tucker, Applied Combinatorics, Second Edition, John Wiley & Sons, New York, 1984.
     [2] C. L. Lin, Introduction to Combinatorial mathematics, .N1cGrawHill, New York, 1968.
     [3] D. Cohen, Basic Techniques of Combinatorial Theory, John Wiley & Sons, New York, 1978.
     [4] F. Roberts, Applied Combinatorics, Prentice-Hall, Englewood Cliffs, N. J. , 1984.
     [5] M. Jantzen, Confluent String Rewriting, Springer-Verlag, New York, 1988.
     [6] R. P. Grimaldi, Discrete and Combinatorial Mathematics, Third Edition, Addison-Wesley, 1994.
     [7] R. Bogart, Introductory Combinatorics, North Holland, New York, 1984.
zh_TW