dc.contributor.advisor | 李陽明 | zh_TW |
dc.contributor.advisor | Li, Young-Ming | en_US |
dc.contributor.author (作者) | 陳建霖 | zh_TW |
dc.contributor.author (作者) | Chen, Chien-Lin | en_US |
dc.creator (作者) | 陳建霖 | zh_TW |
dc.creator (作者) | Chen, Chien-Lin | en_US |
dc.date (日期) | 1996 | en_US |
dc.date.accessioned | 28-四月-2016 13:30:03 (UTC+8) | - |
dc.date.available | 28-四月-2016 13:30:03 (UTC+8) | - |
dc.date.issued (上傳時間) | 28-四月-2016 13:30:03 (UTC+8) | - |
dc.identifier (其他 識別碼) | B2002002894 | en_US |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/87369 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 應用數學系 | zh_TW |
dc.description (描述) | 83751008 | zh_TW |
dc.description.abstract (摘要) | 在這篇論文中,我們主要是研究一個組合等式如下:∑_(i=0)^n▒∑_(j=0)^i▒〖C(n,i)C(n+1,j)=?〗 | zh_TW |
dc.description.abstract (摘要) | In this paper, we will mainly study a combinatorial identity, as the following:∑_(i=0)^n▒∑_(j=0)^i▒〖C(n,i)C(n+1,j)=?〗. When solving this identity, we will not use common calculation. Instead, we will build a method of bijective function in order to obtain the solution to the above identity. | en_US |
dc.description.tableofcontents | 中文摘要 1 ABSTRACT 2 CHAPET 1 INTRODUCTION 3 CHAPET 2 A COMBINATORIAL PROOF 5 CHAPET 3 GENERALIZATION 11 CHAPET 4 CONCLUSION 15 APPENDIX 16 REFERENCES 20 | zh_TW |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#B2002002894 | en_US |
dc.subject (關鍵詞) | 對射函數 | zh_TW |
dc.subject (關鍵詞) | 組合等式 | zh_TW |
dc.title (題名) | 一個組合等式的證明 | zh_TW |
dc.title (題名) | A Proof of Combinatorial Identity | en_US |
dc.type (資料類型) | thesis | en_US |
dc.relation.reference (參考文獻) | [1] A. Tucker, Applied Combinatorics, Second Edition, John Wiley & Sons, New York, 1984. [2] C. L. Lin, Introduction to Combinatorial mathematics, .N1cGrawHill, New York, 1968. [3] D. Cohen, Basic Techniques of Combinatorial Theory, John Wiley & Sons, New York, 1978. [4] F. Roberts, Applied Combinatorics, Prentice-Hall, Englewood Cliffs, N. J. , 1984. [5] M. Jantzen, Confluent String Rewriting, Springer-Verlag, New York, 1988. [6] R. P. Grimaldi, Discrete and Combinatorial Mathematics, Third Edition, Addison-Wesley, 1994. [7] R. Bogart, Introductory Combinatorics, North Holland, New York, 1984. | zh_TW |