dc.contributor.advisor | 王太林 | zh_TW |
dc.contributor.author (Authors) | 范慶辰 | zh_TW |
dc.contributor.author (Authors) | Fan, Ching chen | en_US |
dc.creator (作者) | 范慶辰 | zh_TW |
dc.creator (作者) | Fan, Ching chen | en_US |
dc.date (日期) | 1995 | en_US |
dc.date.accessioned | 28-Apr-2016 15:18:40 (UTC+8) | - |
dc.date.available | 28-Apr-2016 15:18:40 (UTC+8) | - |
dc.date.issued (上傳時間) | 28-Apr-2016 15:18:40 (UTC+8) | - |
dc.identifier (Other Identifiers) | B2002002886 | en_US |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/87595 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 應用數學系 | zh_TW |
dc.description (描述) | 83751009 | zh_TW |
dc.description.abstract (摘要) | In this thesis three methods LMGS, TQR and GR are applied to | zh_TW |
dc.description.tableofcontents | 1 Introduction……1 1.1 An Inverse Eigenvalue Problem……1 1.2 Lanczos Process……2 1.3 Orthogonal Polynomials……4 1.4 TQR Method……5 1.5 GR Method……7 2 Example and Numerical Results……10 2.1 Examples……10 2.2 Difference between L and LMGS……10 2.3 Comparison of LMGS, TQR and GR……13 3 Application to the Least Squares Problem……16 3.1 Fourier Coefficients……16 3.2 Polynomial Least Squares Approximation……20 4 Conclusion……23 References……23 | zh_TW |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#B2002002886 | en_US |
dc.subject (關鍵詞) | 逆特徵值問題 | zh_TW |
dc.subject (關鍵詞) | 蘭克澤斯演算法 | zh_TW |
dc.subject (關鍵詞) | QR 演算法 | zh_TW |
dc.subject (關鍵詞) | Inverse eigenvalue problem | en_US |
dc.subject (關鍵詞) | Lanczos algorithm | en_US |
dc.subject (關鍵詞) | QR algorithm | en_US |
dc.title (題名) | 計算一個逆特徵值問題 | zh_TW |
dc.title (題名) | Computing an Inverse Eigenvalue Problem | en_US |
dc.type (資料類型) | thesis | en_US |
dc.relation.reference (參考文獻) | 〔1〕N. Barkakati, Turbo C++ Bible, Howard W. Sams 1991. 〔2〕C. de Boor, G. H. Golub, The Numerically Stable Reconstruction of A Jacobi Matris from Spectral Data, Linear Algebra and Its Applications 21(1978), pp.245-260. 〔3〕J. J. Dongarra, C. B. Moler, J. R. Bunch, G. W. Stewart, LINPACK User’s Guide, STAM 1979. 〔4〕W. Gautschi, Is the Recurrence Relation for Orthogonal Polynomials Always Stable?, BIT 33(1993), pp.277-284. 〔5〕W. B. Gragg, W. J. Harrod, The Numerically Stable Reconstruction of Jacobi Matrices from Spectral Data, Numer. Math. 44(1984), pp.317-335. 〔6〕B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall 1980. 〔7〕L. Reichel, Fast QR decomposition of Vandermonde-Like Matrices and Polynomial Least Squares Approximation, SIAM J. Matrix Anal. Appl., 12(1991), pp.552-564. 〔8〕T. L. Wang, The QR Transformation for Normal Hessenberg Matrices, unpublished manuscript (1998). 〔9〕D. S. Watkins, Fundamentals of Matrix Computations, John Wiley 1991. | zh_TW |