Please use this identifier to cite or link to this item: https://ah.lib.nccu.edu.tw/handle/140.119/134081
DC FieldValueLanguage
dc.contributor.advisor紀明德zh_TW
dc.contributor.author湯昊軒zh_TW
dc.contributor.authorTang, Hao-Hsuanen_US
dc.creator湯昊軒zh_TW
dc.creatorTang, Hao-Hsuanen_US
dc.date2021en_US
dc.date.accessioned2021-03-02T06:31:20Z-
dc.date.available2021-03-02T06:31:20Z-
dc.date.issued2021-03-02T06:31:20Z-
dc.identifierG0107753005en_US
dc.identifier.urihttp://nccur.lib.nccu.edu.tw/handle/140.119/134081-
dc.description碩士zh_TW
dc.description國立政治大學zh_TW
dc.description資訊科學系zh_TW
dc.description107753005zh_TW
dc.description.abstract紙摺立體書利用紙張堆疊與交互作用來產生複雜立體結構,其精巧的摺疊設計能讓各年齡層的人皆感到有趣味。而樂高(LEGO)從1940年代發展至今,成為了在建構立體模型的領域中家喻戶曉的一種工具。在2016年,Lego公司的Lego ideas平台出現了將紙摺立體書與樂高積木結合的樂高立體書結構,激發了我們想要設計可以自動化生成樂高立體書之電腦輔助系統的動機。\n雖然在先前有針對紙摺立體書與樂高建構的各種研究,但並沒有將兩者結合的相關研究,故本研究在樂高立體書的觀察與分析下,提出了三個樂高立體書的機制,透過公式化來分析樂高磚間如何彼此排列形成合理的樂高立體書結構。接著我們設計一個系統,將輸入的二維影像透過使用者選定的機制與相關參數來生成初始結構,接著透過我們提出的優化目標函式與優化流程,在無窮的三維結構設計複雜度與可行的時間中,來生成同時具有穩定性與複雜度,且合理的樂高立體書結構。在研究結果中,我們輸入多種不同類型的影像與參數產生結果,來驗證我們系統可用於各種輸入影像的可行性。zh_TW
dc.description.abstractPaper pop-ups demonstrate complex three-dimensional structures by the arrangement of paper. The delicate design of paper pop-ups fascinates people of all ages. Since the 1940s, Lego becomes a well-known tool in the field of constructing three-dimensional models. In 2016, a V-fold type Lego pop-up book was published on the Lego ideas platform. This amazing work has led to our computer-assisted tools for designing Lego pop-ups.\nAlthough there have been various studies on paper pop-up books and Lego construction, there is no related research that combines the two. Therefore, based on the observation and analysis of Lego pop-ups, we propose three Lego pop-ups mechanisms. We analyze how to arrange the Lego bricks to form a reasonable Lego pop-up structure through general formulation. Based on the proposed mechanisms, we design a system to generate an initial layout design from the input of two-dimensional images and user-specified mechanisms and parameters. Then, through the proposed optimization model, we compute a stable structure that is easy to assemble in a feasible time even the complexity of the three-dimensional is infinite. We verify the feasibility of the proposed method by various kinds of input images of our system.en_US
dc.description.tableofcontents摘要 1\nAbstract 2\n目錄 3\n圖目錄 5\n表目錄 8\n一、 簡介 9\n1.1 研究動機 9\n1.2 問題描述 10\n1.3 論文貢獻 10\n1.4 論文章節架構 11\n二、 相關研究 12\n2.1 樂高積木的建構 12\n2.2 立體書折疊結構 13\n2.3 連動結構 14\n三、 樂高立體書的基本介紹 16\n3.1 立體書之術語 16\n3.2 紙立體書的機制 16\n3.2.1 Step-fold 階梯型機制 17\n3.2.2 Tent-fold 帳篷型機制 17\n3.2.3 V-fold V型機制 17\n3.3 樂高磚塊厚度與比例限制 17\n3.4 樂高立體書之術語 18\n3.5 系統使用的樂高磚集 19\n四、 樂高立體書之機制分析 21\n4.1 Tent-fold 帳篷式機制 21\n4.1.1 定義與可折疊性 21\n4.1.2 書頁的寬度w 22\n4.1.3 書頁的高度h 23\n4.1.4 非左右對稱之帳篷式機制 23\n4.2 Step-fold 階梯式機制 27\n定義與可折疊性 27\n4.3 V-fold V型機制 28\n4.3.1 定義與可折疊性 28\n4.3.2 書脊的寬度 depth 30\n4.3.3 書頁的寬度w 31\n4.3.4 書頁的高度h 32\n4.3.5 避免合頁磚與書脊產生碰撞 33\n五、 研究方法 35\n5.1 系統流程 35\n5.2 系統建置的前處理 36\n5.2.1樂高模型檔匯入 36\n5.2.2 樂高磚的資料結構 37\n5.2.3 樂高磚的物理模擬引擎 37\n5.3 輸入影像之處理 39\n5.3.1 影像感興趣區域擷取 39\n5.3.2 影像分析 40\n5.4 初始的設計生成 40\n5.5 樂高磚結構調整與優化目標函式 40\n5.5.1 優化的目標函式 (Objective Function) 41\n5.5.2 結構複雜度(Model Complexity) 41\n5.5.3 結構穩定性(Model Stability) 42\n5.5.4 結構的支撐磚曝光程度(Exposed Ratio of BRACEs) 46\n5.6 系統的樂高磚結構優化方法與實作細節 47\n5.7 使用者互動介面 49\n六、 研究結果 51\n6.1 階梯式結構 51\n單面呈現之結構 54\n雙面呈現之結構 55\n6.2 V型結構 56\n6.3 書框的生成 59\n6.4 研究分析 61\n七、 結論 63\n7.1 結論 63\n7.2 未來展望 63\n參考文獻 65zh_TW
dc.format.extent2575540 bytes-
dc.format.mimetypeapplication/pdf-
dc.source.urihttp://thesis.lib.nccu.edu.tw/record/#G0107753005en_US
dc.subject樂高建構zh_TW
dc.subject立體書zh_TW
dc.title樂高立體書的自動生成系統zh_TW
dc.titleAutomatic Generation of Lego Pop-upsen_US
dc.typethesisen_US
dc.relation.reference 宋家慶、翁瑋辰、張登凱、紀明德。具關節可動之樂高生物骨架設計。Computer Graphics Workshop 2018。\n Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R. W., ... & Bickel, B. (2013). Computational design of mechanical characters. ACM Transactions on Graphics (TOG), 32(4), 83.\n Demaine, E. D., & Tachi, T. (2017). Origamizer: A practical algorithm for folding any polyhedron. In LIPIcs-Leibniz International Proceedings in Informatics (Vol. 77). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.\n Glassner, A. (1998). Interactive pop-up card design. Miscrosoft Technical Report.\n Hong, J. Y., Way, D. L., Shih, Z. C., Tai, W. K., & Chang, C. C. (2016). Inner engraving for the creation of a balanced LEGO sculpture. The Visual Computer, 32(5), 569-578.\n Iizuka, S., Endo, Y., Mitani, J., Kanamori, Y., & Fukui, Y. (2011). An interactive design system for pop-up cards with a physical simulation. The Visual Computer, 27(6–8), 605–612. https://doi.org/10.1007/s00371-011-0564-0\n Koo, B., Li, W., Yao, J., Agrawala, M., & Mitra, N. J. (2014). Creating works-like prototypes of mechanical objects. ACM Transactions on Graphics, 33(6).\n Kuo, M. H., Lin, Y. E., Chu, H. K., Lee, R. R., & Yang, Y. L. (2015). Pixel2brick: Constructing brick sculptures from pixel art. In Computer Graphics Forum (Vol. 34, No. 7, pp. 339-348).\n Lang, R. J. (1996). A computational algorithm for origami design. In Proceedings of the twelfth annual symposium on Computational geometry (pp. 98-105). ACM.\n Lee, Y. T., Tor, S. B., & Soo, E. L. (1996). Mathematical modelling and simulation of pop-up books. Computers & Graphics, 20(1), 21–31. https://doi.org/10.1016/0097-8493(95)00089-5\n Li, X. Y., Shen, C. H., Huang, S. S., Ju, T., & Hu, S. M. (2010). Popup: automatic paper architectures from 3D models. ACM Transactions on Graphics (TOG), 29(4), 111.\n Luo, S. J., Yue, Y., Huang, C. K., Chung, Y. H., Imai, S., Nishita, T., & Chen, B. Y. (2015). Legolization: optimizing lego designs. ACM Transactions on Graphics (TOG), 34(6), 222.\n Ono, S., Alexis, A., & Chang, Y. (2013). Automatic generation of LEGO from the polygonal data. In International workshop on advanced image technology (pp. 262-267).\n Ruiz Jr, C. R., Le, S. N., Yu, J., & Low, K. L. (2014). Multi‐style paper pop‐up designs from 3D models. In Computer Graphics Forum (Vol. 33, No. 2, pp. 487-496).\n Testuz, R., Schwartzburg, Y., & Pauly, M. (2013). Automatic Generation of Constructable Brick Sculptures. In Eurographics (Short Papers) (pp. 81-84).\n Xiao, N., Zhu, Z., Martin, R. R., Xu, K., Lu, J. M., & Hu, S. M. (2018). Computational Design of Transforming Pop-up Books. ACM Transactions on Graphics (TOG), 37(1), 8.\n Yun, G., Park, C., Yang, H., & Min, K. (2017). Legorization with multi-height bricks from silhouette-fitted voxelization. In Proceedings of the Computer Graphics International Conference(p. 40). ACM.\n Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., & Guo, B. (2012). Motion-guided mechanical toy modeling. ACM Trans. Graph., 31(6), 127-1.\n Zhang, M., Igarashi, Y., Kanamori, Y., & Mitani, J. (2015. Designing mini block artwork from colored mesh. In International Symposium on Smart Graphics (pp. 3-15). Springer, Cham.\n Zhou, J., Chen, X., & Xu, Y. (2019). Automatic Generation of Vivid LEGO Architectural Sculptures. Computer Graphics Forum, 38(6), 31-42. doi:10.1111/cgf.13603zh_TW
dc.identifier.doi10.6814/NCCU202100351en_US
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.cerifentitytypePublications-
item.grantfulltextrestricted-
item.openairetypethesis-
Appears in Collections:學位論文
Files in This Item:
File Description SizeFormat
300501.pdf2.52 MBAdobe PDF2View/Open
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.