學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

  • No doi shows Citation Infomation
題名 鋸齒狀石墨烷奈米帶與其複合材料之電子結構計算
Electronic structures of Zigzag Graphane nanoribbons and their composites
作者 蔡松倪
Tsai, Sung Ni
貢獻者 楊志開
Yang, Chih Kai
蔡松倪
Tsai, Sung Ni
關鍵詞 石墨烯
石墨烷
氮化硼
過度金屬
Graphene
Graphane
Boron Nitride
Transition metal
日期 2017
上傳時間 8-Feb-2017 16:43:11 (UTC+8)
摘要 碳(Carbon)為IV A族,每顆碳原子擁有四顆能夠鍵結的電子,碳的同素異形體有數種,最常見為石墨、鑽石、富勒烯(C_60)以及石墨烯(Graphene),每一種同素異形體所表現的物理性質也不同。其中我以石墨烯這種二維材料進行計算,石墨烯(Graphene)是一個非常良好的導體。但在其碳原子上下交互接上氫原子(Hydrogen)可形成石墨烷扶手椅型(Graphane chair)是一個絕緣體。另一類似結構的材料為氮化硼(Boron Nitride,簡稱BN),利用3A的硼原子(Boron)與5A的氮原子(Nitride)取代石墨烯中的碳原子形成六角形氮化硼。BN的能隙差很大,故也為不導電之絕緣體。
  其中二維的石墨烯(Graphene)又可依特定方式裁切成一維鋸齒狀石墨烯奈米帶(1D zigzag Graphene nanoribbon)。另外若將石墨烷扶手椅型(Graphane chair)上面的氫原子(Hydrogen)拔除,考慮拔除氫原子的鏈狀(chain)的數目其導電性質與磁性將會發生變化。並將一維氮化硼(BN)連接一維鋸齒狀石墨烷奈米帶(1D zigzag Graphane nanoribbon),於石墨烷奈米帶邊界接上兩顆氫考慮其結合能,再拔去線狀(line)與鏈狀(chain)氫原子探討其能量大小與能帶性質。
  最後將一維鋸齒狀石墨烷奈米帶(1D zigzag Graphane nanoribbon)被拔除氫鍊(chain)處加入第一類過度金屬(1st Transition metal),由於過度金屬擁有3d軌域之角動量,故進一步分析其磁性影響與能帶性質。以上計算皆使用Vienna Ab initio Simulation Package (VASP)計算。
參考文獻 [1] K. S. Novoselov,; A. K. Geim,; S. V. Morozov,; D. Jiang,; Y. Zhang ,; S. V. Dubonos,; I. V. Grigorieva,; A. A. Firsov, ” Electric Field Effect in Atomically Thin Carbon Films” Science. 22;306(5696):666-9 (2004)
[2] Kyoko Nakada, Mitsutaka Fujita, Gene Dresselhaus, and Mildred S. Dresselhaus ,’’ Edge state in graphene ribbons: Nanometer size effect and edge shape dependence’’ Phys. Rev. B 54, 17954 (1996)
[3] L. Pisani, J. A. Chan, B. Montanari, and N. M. Harrison ,’’ Electronic structure and magnetic properties of graphitic ribbons’’ Phys. Rev. B 75, 064418 (2007)
[4] Jorge O. Sofo, Ajay S. Chaudhari, and Greg D. Barber ,’’ Graphane: a two-dimensional hydrocarbon’’ Phys. Rev. B 75, 153401 (2007)
[5] C. K. Yang,’’Graphane with defect or transition-metal impurity’’ CarbonVolume 48, Issue 13, Pages 3901–3905 (2010)
[6] Haibo Zeng, Chunyi Zhi, Zhuhua Zhang, Xianlong Wei, Xuebin Wang, Wanlin Guo, Yoshio Bando, and Dmitri Golberg ,’’ “White Graphenes”: Boron Nitride Nanoribbons via Boron Nitride Nanotube Unwrapping’’ Nano Lett. 10 (12). pp 5049–5055 (2010)
[7] Mark P. Levendorf, Cheol-Joo Kim, Lola Brown, Pinshane Y. Huang, Robin W. Havener, David A. Muller & Jiwoong Park ,’’ Graphene and boron nitride lateral heterostructures for atomically thin circuitry’’ Nature 488 , 627–632 (2012)
[8] Robert Drost, Uppstu A, Schulz F, Hämäläinen SK, Ervasti M, Harju A, Liljeroth P.’’ Electronic states at the graphene-hexagonal boron nitride zigzag interface.Nano Lett. 10;14(9):5128-32. (2014)
[9] Bi-Ru Wu and Chih-Kai Yang ,’’ Electronic structures of graphane with vacancies and graphene adsorbed with fluorine atoms’’ AIP Advances 2, 012173 (2012)
[10] Bi-Ru Wu and Chih-Kai Yang ,’’ Energy band modulation of graphane by hydrogen-vacancy chains: A first-principles study’’AIP Advances 4, 087129 (2014)
[11] P. Hohenberg and W. Kohn,’’ Inhomogeneous Electron Gas’’Phys. Rev. 136, B864 (1964)
[12] W. Kohn and L. J. Sham,’’ Self-Consistent Equations Including Exchange and Correlation Effects’’ Phys. Rev. 140 A1133 (1965)
描述 碩士
國立政治大學
應用物理研究所
103755008
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0103755008
資料類型 thesis
dc.contributor.advisor 楊志開zh_TW
dc.contributor.advisor Yang, Chih Kaien_US
dc.contributor.author (Authors) 蔡松倪zh_TW
dc.contributor.author (Authors) Tsai, Sung Nien_US
dc.creator (作者) 蔡松倪zh_TW
dc.creator (作者) Tsai, Sung Nien_US
dc.date (日期) 2017en_US
dc.date.accessioned 8-Feb-2017 16:43:11 (UTC+8)-
dc.date.available 8-Feb-2017 16:43:11 (UTC+8)-
dc.date.issued (上傳時間) 8-Feb-2017 16:43:11 (UTC+8)-
dc.identifier (Other Identifiers) G0103755008en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/106440-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用物理研究所zh_TW
dc.description (描述) 103755008zh_TW
dc.description.abstract (摘要) 碳(Carbon)為IV A族,每顆碳原子擁有四顆能夠鍵結的電子,碳的同素異形體有數種,最常見為石墨、鑽石、富勒烯(C_60)以及石墨烯(Graphene),每一種同素異形體所表現的物理性質也不同。其中我以石墨烯這種二維材料進行計算,石墨烯(Graphene)是一個非常良好的導體。但在其碳原子上下交互接上氫原子(Hydrogen)可形成石墨烷扶手椅型(Graphane chair)是一個絕緣體。另一類似結構的材料為氮化硼(Boron Nitride,簡稱BN),利用3A的硼原子(Boron)與5A的氮原子(Nitride)取代石墨烯中的碳原子形成六角形氮化硼。BN的能隙差很大,故也為不導電之絕緣體。
  其中二維的石墨烯(Graphene)又可依特定方式裁切成一維鋸齒狀石墨烯奈米帶(1D zigzag Graphene nanoribbon)。另外若將石墨烷扶手椅型(Graphane chair)上面的氫原子(Hydrogen)拔除,考慮拔除氫原子的鏈狀(chain)的數目其導電性質與磁性將會發生變化。並將一維氮化硼(BN)連接一維鋸齒狀石墨烷奈米帶(1D zigzag Graphane nanoribbon),於石墨烷奈米帶邊界接上兩顆氫考慮其結合能,再拔去線狀(line)與鏈狀(chain)氫原子探討其能量大小與能帶性質。
  最後將一維鋸齒狀石墨烷奈米帶(1D zigzag Graphane nanoribbon)被拔除氫鍊(chain)處加入第一類過度金屬(1st Transition metal),由於過度金屬擁有3d軌域之角動量,故進一步分析其磁性影響與能帶性質。以上計算皆使用Vienna Ab initio Simulation Package (VASP)計算。
zh_TW
dc.description.tableofcontents 第一章 緒論 1
1.1研究動機 2
第二章 研究方法 4
第三章 研究結果 8
3.1 第一部分 Zigzag graphane nanoribbon (N=12) Cut Hydrogen chain 10
3.1.1 G12切去中間氫鏈(n=6處) 11
3.1.2 G12切去(N=2處)之氫鏈 13
3.1.3 G12切去(n=2,3處)兩條氫鏈 14
3.1.4 G12切去(n=2,4處)兩條氫鏈 16
3.1.5 G12切去(n=2,5處)兩條氫鏈 17
3.1.6 G12切去(n=2,6處)兩條氫鏈 19
3.1.7 G12切去(n=6,7處)兩條氫鏈 20
3.1.8 G12切去(n=5.6.7處)三條氫鏈 24
3.1.9 G12切去(n=5~8處)四條氫鏈 27
3.1.10 G12切去(n=5~9處)五條氫鏈 34
3.1.11 G12切去(n=4~9處)六條氫鏈 39
3.1.12 G12切去(n=4~10處)七條氫鏈 45
3.1.13 G12切去(n=3~10處)八條氫鏈 51
3.1.14 G12切去(n=5,7處)兩條氫鏈 56
3.1.15 G12切去(n=5,7,8處)三條氫鏈 58
3.1.16 G12切去(n=5,6,8,9處)四條氫鏈 60
3.1.17 G12將3.1.16中間氫鏈移至(n=6處) 62
3.1.18 G12切去(n=4,5,7,8,9處)五條氫鏈 63
3.1.19 G12切去(n=4,5,8,9)四條氫鏈與3.1.16做比較 65
3.1.20 G12切去(n=4,5,6,8,9,10)六條氫鏈 66
3.1.21 G12切去(n=3,4,5,7,8,9,10處)七條氫鏈 68
3.1.22 G12切去(n=3,4,5,8,9,10處)六條氫鏈與3.1.20比較 70
3.2 第二部分 Zigzag graphane nanoribbon+六角形氮化硼(BN)(各六層) 72
3.2.1 G12NB邊界接上一氫原子與接上兩氫原子之結合能大小 72
3.2.2 GNB-2切去(n=3處)之line線狀與chain鏈狀氫之分析 76
3.3 第三部分 Zigzag graphane nanoribbon +First(3d) Transition metal 79
3.3.1 G12+ Titanium 79
3.3.2 G12+ Vanadium 83
3.3.3 G12+ Chromium 87
3.3.4 G12+ Manganese 89
3.3.5 G12+Iron 92
3.3.6 G12+ Cobalt 95
3.3.7 G12+ nickel 98
3.3.8 G12+ copper 101
3.3.9 G12+ zinc 105
第四章 結果討論 109
附錄 參考文獻 111
zh_TW
dc.format.extent 5621473 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0103755008en_US
dc.subject (關鍵詞) 石墨烯zh_TW
dc.subject (關鍵詞) 石墨烷zh_TW
dc.subject (關鍵詞) 氮化硼zh_TW
dc.subject (關鍵詞) 過度金屬zh_TW
dc.subject (關鍵詞) Grapheneen_US
dc.subject (關鍵詞) Graphaneen_US
dc.subject (關鍵詞) Boron Nitrideen_US
dc.subject (關鍵詞) Transition metalen_US
dc.title (題名) 鋸齒狀石墨烷奈米帶與其複合材料之電子結構計算zh_TW
dc.title (題名) Electronic structures of Zigzag Graphane nanoribbons and their compositesen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] K. S. Novoselov,; A. K. Geim,; S. V. Morozov,; D. Jiang,; Y. Zhang ,; S. V. Dubonos,; I. V. Grigorieva,; A. A. Firsov, ” Electric Field Effect in Atomically Thin Carbon Films” Science. 22;306(5696):666-9 (2004)
[2] Kyoko Nakada, Mitsutaka Fujita, Gene Dresselhaus, and Mildred S. Dresselhaus ,’’ Edge state in graphene ribbons: Nanometer size effect and edge shape dependence’’ Phys. Rev. B 54, 17954 (1996)
[3] L. Pisani, J. A. Chan, B. Montanari, and N. M. Harrison ,’’ Electronic structure and magnetic properties of graphitic ribbons’’ Phys. Rev. B 75, 064418 (2007)
[4] Jorge O. Sofo, Ajay S. Chaudhari, and Greg D. Barber ,’’ Graphane: a two-dimensional hydrocarbon’’ Phys. Rev. B 75, 153401 (2007)
[5] C. K. Yang,’’Graphane with defect or transition-metal impurity’’ CarbonVolume 48, Issue 13, Pages 3901–3905 (2010)
[6] Haibo Zeng, Chunyi Zhi, Zhuhua Zhang, Xianlong Wei, Xuebin Wang, Wanlin Guo, Yoshio Bando, and Dmitri Golberg ,’’ “White Graphenes”: Boron Nitride Nanoribbons via Boron Nitride Nanotube Unwrapping’’ Nano Lett. 10 (12). pp 5049–5055 (2010)
[7] Mark P. Levendorf, Cheol-Joo Kim, Lola Brown, Pinshane Y. Huang, Robin W. Havener, David A. Muller & Jiwoong Park ,’’ Graphene and boron nitride lateral heterostructures for atomically thin circuitry’’ Nature 488 , 627–632 (2012)
[8] Robert Drost, Uppstu A, Schulz F, Hämäläinen SK, Ervasti M, Harju A, Liljeroth P.’’ Electronic states at the graphene-hexagonal boron nitride zigzag interface.Nano Lett. 10;14(9):5128-32. (2014)
[9] Bi-Ru Wu and Chih-Kai Yang ,’’ Electronic structures of graphane with vacancies and graphene adsorbed with fluorine atoms’’ AIP Advances 2, 012173 (2012)
[10] Bi-Ru Wu and Chih-Kai Yang ,’’ Energy band modulation of graphane by hydrogen-vacancy chains: A first-principles study’’AIP Advances 4, 087129 (2014)
[11] P. Hohenberg and W. Kohn,’’ Inhomogeneous Electron Gas’’Phys. Rev. 136, B864 (1964)
[12] W. Kohn and L. J. Sham,’’ Self-Consistent Equations Including Exchange and Correlation Effects’’ Phys. Rev. 140 A1133 (1965)
zh_TW