學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

  • No doi shows Citation Infomation
題名 二硫化鉬奈米帶與其混合結構
The armchair MoS2 nanoribbon and its composites
作者 林之怡
Lin, Joy
貢獻者 楊志開
Yang, Chih-Kai
林之怡
Lin, Joy
關鍵詞 二硫化鉬奈米帶
MoS2 nanoribbon
日期 2017
上傳時間 1-Mar-2017 17:14:33 (UTC+8)
摘要 2004年石墨烯的發現是二維(2D)材料發展的關鍵性時刻。近年來,由於從2D材料出現的新性質和應用,許多非石墨烯層狀材料也成為重要的研究課題。
在本論文中,我們利用密度泛函理論(DFT)進行了對二硫化鉬奈米帶與其加上各種原子鏈的混合結構做了各種研究如結構,電子性質,能帶隙,局部電子態密度(LDOS)和磁化的性質。從我們的研究發現,二硫化鉬與不同的原子鏈混合時會改變原本的半導體性質,而有半金屬和導體的性質出現.
A new area of two-dimensional (2D) materials started in 2004, when graphene was successfully isolated from graphite. In recent years, there has been lots of research topic focusing on other(non-graphene) layered materials due to the new properties and applications that were found in 2D confinement.

Within this thesis, an ab-initio study of MoS2 nanoribbon with a wide variety of atomic chains deposited on it is performed by utilizing the framework of density functional theory(DFT). Properties like the structural, band gaps, electronic properties, local electronic density of states (LDOS) and magnetization are determined. We have found that depositing atomic chains,the band gap of MoS2 nanoribbons can be engineered, changing the initially semiconductor ribbon into half metallic and conductors.
參考文獻 [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang,S. V. Dubonos, I.
V. Grigorieva and A. A. Firsov. Science. 2004, 306 ,666-669.
[2] Jiangang He, Kechen Wu, Rongjian Sa, Qiaohong Li, and Yongqin Wei Appl. Phys.
Lett.. 2010, 96 ,082504.
[3] Paul Ziesche, Stefan Kurth, John P. Perdew.Computational Materials Science. 1998,
11 ,122–127.
[4] K. S. Novoselov, A. Mishchenko, A. Carvalho and A. H. Castro Neto.Science. 2016,
353 ,9439.
[5] Ganesh R. Bhimanapati,Zhong Lin,Vincent Meunier,Yeonwoong Jung,Judy
Cha,Saptarshi Das,Di Xiao, Youngwoo Son, Michael S. Strano,Valentino R.
Cooper,Liangbo Liang, Steven G. Louie,Emilie Ringe, Wu Zhou, Steve S. Kim,
Rajesh R. Naik, Bobby G. Sumpter, Humberto Terrones, Fengnian Xia, Yeliang
Wang, Jun Zhu, Deji Akinwande, Nasim Alem, Jon A. Schuller, Raymond E.
Schaak,Mauricio Terrones, and Joshua A. Robinson.ACSNANO.2015,12,11509 –
11539.
[6] C. Ataca, H. S-ahin,E. Akturk,and S. Ciraci.J. Phys. Chem. C. 2011, 115 ,3934–
3941.
[7] Yafei Li,Zhen Zhou, Shengbai Zhang, and Zhongfang Chen.J. AM. CHEM. SOC..
2008, 130 ,316739–16744.
[8] Yanzong Wang, Baolin Wang, Rui Huang, Benling Gao, Fanjie Kong,Qinfang
Zhang.Physica E..2014,63,276-282
[9] Ferdows Zahid, Lei Liu, Yu Zhu, Jian Wang, and Hong Guo.AIP ADVANCES2013,3,052111
[10] Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlögl. PHYSICAL REVIEW.
2011,84,153402
[11] Kresse, G., Hafner,J. PHYSICAL REVIEW B..1993,47,558
[12] Blochl,P.E. PHYSICAL REVIEW B..1994,50,17953
[13] Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson,M. R., Singh,
D. J., Fiolhais, C. PHYSICAL REVIEW B..1992,46,6671
描述 碩士
國立政治大學
應用物理研究所
103755007
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0103755007
資料類型 thesis
dc.contributor.advisor 楊志開zh_TW
dc.contributor.advisor Yang, Chih-Kaien_US
dc.contributor.author (Authors) 林之怡zh_TW
dc.contributor.author (Authors) Lin, Joyen_US
dc.creator (作者) 林之怡zh_TW
dc.creator (作者) Lin, Joyen_US
dc.date (日期) 2017en_US
dc.date.accessioned 1-Mar-2017 17:14:33 (UTC+8)-
dc.date.available 1-Mar-2017 17:14:33 (UTC+8)-
dc.date.issued (上傳時間) 1-Mar-2017 17:14:33 (UTC+8)-
dc.identifier (Other Identifiers) G0103755007en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/106883-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用物理研究所zh_TW
dc.description (描述) 103755007zh_TW
dc.description.abstract (摘要) 2004年石墨烯的發現是二維(2D)材料發展的關鍵性時刻。近年來,由於從2D材料出現的新性質和應用,許多非石墨烯層狀材料也成為重要的研究課題。
在本論文中,我們利用密度泛函理論(DFT)進行了對二硫化鉬奈米帶與其加上各種原子鏈的混合結構做了各種研究如結構,電子性質,能帶隙,局部電子態密度(LDOS)和磁化的性質。從我們的研究發現,二硫化鉬與不同的原子鏈混合時會改變原本的半導體性質,而有半金屬和導體的性質出現.
zh_TW
dc.description.abstract (摘要) A new area of two-dimensional (2D) materials started in 2004, when graphene was successfully isolated from graphite. In recent years, there has been lots of research topic focusing on other(non-graphene) layered materials due to the new properties and applications that were found in 2D confinement.

Within this thesis, an ab-initio study of MoS2 nanoribbon with a wide variety of atomic chains deposited on it is performed by utilizing the framework of density functional theory(DFT). Properties like the structural, band gaps, electronic properties, local electronic density of states (LDOS) and magnetization are determined. We have found that depositing atomic chains,the band gap of MoS2 nanoribbons can be engineered, changing the initially semiconductor ribbon into half metallic and conductors.
en_US
dc.description.tableofcontents 摘要vii
Abstract ix
1 Introduction 1
2 Method 5
3 Armchair MoS2 nanoribbons(15-AMoS2NR) 9
4 Ti atomic chain deposited on 15-AMoS2NR 13
4.1 Single atomic Ti chain . . . . .. . . . . 14
4.2 Double atomic Ti chain . . . . . . . . . 24
4.3 Triple atomic Ti chain . . . .. . . . . . 32
5 Boron group atomic chain deposited on 15-AMoS2NR 39
5.1 Al atomic chain . . . . . . . . . . . . 40
5.2 Ga atomic chain . . . . . . . . . . . . . 48
5.3 In atomic chain . . . . . . . . . . . . . 54
5.4 Tl atomic chain . . . . . . . . . . . . . 60
6 Carbon group atomic chain deposited on 15-AMoS2NR 67
6.1 C atom replace S atom . . . . . . . . . .. 68
6.2 Si atomic chain . . . . . . . . . . . . . 73
6.3 Ge atomic chain . . . . . . . . . . . . . 82
7 Conclusion 91
zh_TW
dc.format.extent 8006561 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0103755007en_US
dc.subject (關鍵詞) 二硫化鉬奈米帶zh_TW
dc.subject (關鍵詞) MoS2 nanoribbonen_US
dc.title (題名) 二硫化鉬奈米帶與其混合結構zh_TW
dc.title (題名) The armchair MoS2 nanoribbon and its compositesen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang,S. V. Dubonos, I.
V. Grigorieva and A. A. Firsov. Science. 2004, 306 ,666-669.
[2] Jiangang He, Kechen Wu, Rongjian Sa, Qiaohong Li, and Yongqin Wei Appl. Phys.
Lett.. 2010, 96 ,082504.
[3] Paul Ziesche, Stefan Kurth, John P. Perdew.Computational Materials Science. 1998,
11 ,122–127.
[4] K. S. Novoselov, A. Mishchenko, A. Carvalho and A. H. Castro Neto.Science. 2016,
353 ,9439.
[5] Ganesh R. Bhimanapati,Zhong Lin,Vincent Meunier,Yeonwoong Jung,Judy
Cha,Saptarshi Das,Di Xiao, Youngwoo Son, Michael S. Strano,Valentino R.
Cooper,Liangbo Liang, Steven G. Louie,Emilie Ringe, Wu Zhou, Steve S. Kim,
Rajesh R. Naik, Bobby G. Sumpter, Humberto Terrones, Fengnian Xia, Yeliang
Wang, Jun Zhu, Deji Akinwande, Nasim Alem, Jon A. Schuller, Raymond E.
Schaak,Mauricio Terrones, and Joshua A. Robinson.ACSNANO.2015,12,11509 –
11539.
[6] C. Ataca, H. S-ahin,E. Akturk,and S. Ciraci.J. Phys. Chem. C. 2011, 115 ,3934–
3941.
[7] Yafei Li,Zhen Zhou, Shengbai Zhang, and Zhongfang Chen.J. AM. CHEM. SOC..
2008, 130 ,316739–16744.
[8] Yanzong Wang, Baolin Wang, Rui Huang, Benling Gao, Fanjie Kong,Qinfang
Zhang.Physica E..2014,63,276-282
[9] Ferdows Zahid, Lei Liu, Yu Zhu, Jian Wang, and Hong Guo.AIP ADVANCES2013,3,052111
[10] Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlögl. PHYSICAL REVIEW.
2011,84,153402
[11] Kresse, G., Hafner,J. PHYSICAL REVIEW B..1993,47,558
[12] Blochl,P.E. PHYSICAL REVIEW B..1994,50,17953
[13] Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson,M. R., Singh,
D. J., Fiolhais, C. PHYSICAL REVIEW B..1992,46,6671
zh_TW