學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

題名 使用正規隨機漫步及相似度進行異常偵測
Anomaly Detection Using Regulated Random Walk and Similarity Degree
作者 陳柏龍
Chen, Po-Lung
貢獻者 周珮婷
Chou, Pei-Ting
陳柏龍
Chen, Po-Lung
關鍵詞 異常偵測
相似度
正規隨機漫步
多尺度
自我調整
Anomaly detection
Similarity
Regulated random walk
Multi-scale
Self-tuning
日期 2019
上傳時間 5-Sep-2019 15:42:18 (UTC+8)
摘要 資料雲幾何樹是一個透過正規隨機漫步捕捉資料結構,再進行分群的一個演算法。本論文從資料雲幾何樹的概念中延伸出了兩種異常偵測的方法,第一種是使用樣本間的相似度加總來進行異常偵測,第二種則是透過正規隨機漫步探索數據,以探索到的時間點做為異常值。而在使用多尺度的模擬資料時,發現演算法表現不穩定,因此使用了self-tuning的策略來改良演算法,能克服在資料多尺度時進行異常偵測的問題,最後在實際資料上和經典方法LOF比較。
Data cloud geometry tree is a clustering algorithm that explores data structures by regulated random walk. Based on the concept of data cloud geometry tree, the current study proposes two anomaly detection methods. The first method uses sum of similarities between samples for anomaly detection. The second method explores data through regulated random walk to detect unusual pattern. Samples that were later explored are treated as abnormal. However, the performance of the proposed algorithms are unstable when dealing with multi-scaled simulated data. Therefore, self-tuning strategy is applied to improve the performance of algorithms and to overcome the anomaly detection problem for multi-scaled data. Finally, the performance of proposed methods are compared to the performance resulting from the classical method, LOF, with many real examples.
參考文獻 Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: identifying density-based local outliers. Paper presented at the ACM sigmod record.
Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM computing surveys (CSUR), 41(3), 15.
Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. Paper presented at the Kdd.
Fushing, H., & McAssey, M. P. (2010). Time, temperature, and data cloud geometry. Phys Rev E Stat Nonlin Soft Matter Phys, 82(6 Pt 1), 061110. doi:10.1103/PhysRevE.82.061110
Goldstein, M. (2012). FastLOF: An expectation-maximization based local outlier detection algorithm. Paper presented at the Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).
Grubbs, F. E. (1950). Sample criteria for testing outlying observations. The Annals of Mathematical Statistics, 21(1), 27-58.
He, Z., Xu, X., & Deng, S. (2003). Discovering cluster-based local outliers. Pattern Recognition Letters, 24(9-10), 1641-1650.
Kriegel, H.-P., & Zimek, A. (2008). Angle-based outlier detection in high-dimensional data. Paper presented at the Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining.
Lazarevic, A., & Kumar, V. (2005). Feature bagging for outlier detection. Paper presented at the Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining.
Lee, Y.-J., Yeh, Y.-R., & Wang, Y.-C. F. (2012). Anomaly detection via online oversampling principal component analysis. IEEE Transactions on Knowledge and Data Engineering, 25(7), 1460-1470.
Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation forest. Paper presented at the 2008 Eighth IEEE International Conference on Data Mining.
Maaten, L. v. d., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine learning research, 9(Nov), 2579-2605.
Ng, A. Y., Jordan, M. I., & Weiss, Y. (2002). On spectral clustering: Analysis and an algorithm. Paper presented at the Advances in neural information processing systems.
Pokrajac, D., Lazarevic, A., & Latecki, L. J. (2007). Incremental local outlier detection for data streams. Paper presented at the 2007 IEEE symposium on computational intelligence and data mining.
Sakurada, M., & Yairi, T. (2014). Anomaly detection using autoencoders with nonlinear dimensionality reduction. Paper presented at the Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis.
Zelnik-Manor, L., & Perona, P. (2005). Self-tuning spectral clustering. Paper presented at the Advances in neural information processing systems.
Zenati, H., Foo, C. S., Lecouat, B., Manek, G., & Chandrasekhar, V. R. (2018). Efficient gan-based anomaly detection. arXiv preprint arXiv:1802.06222.
描述 碩士
國立政治大學
統計學系
106354026
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0106354026
資料類型 thesis
dc.contributor.advisor 周珮婷zh_TW
dc.contributor.advisor Chou, Pei-Tingen_US
dc.contributor.author (Authors) 陳柏龍zh_TW
dc.contributor.author (Authors) Chen, Po-Lungen_US
dc.creator (作者) 陳柏龍zh_TW
dc.creator (作者) Chen, Po-Lungen_US
dc.date (日期) 2019en_US
dc.date.accessioned 5-Sep-2019 15:42:18 (UTC+8)-
dc.date.available 5-Sep-2019 15:42:18 (UTC+8)-
dc.date.issued (上傳時間) 5-Sep-2019 15:42:18 (UTC+8)-
dc.identifier (Other Identifiers) G0106354026en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/125518-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計學系zh_TW
dc.description (描述) 106354026zh_TW
dc.description.abstract (摘要) 資料雲幾何樹是一個透過正規隨機漫步捕捉資料結構,再進行分群的一個演算法。本論文從資料雲幾何樹的概念中延伸出了兩種異常偵測的方法,第一種是使用樣本間的相似度加總來進行異常偵測,第二種則是透過正規隨機漫步探索數據,以探索到的時間點做為異常值。而在使用多尺度的模擬資料時,發現演算法表現不穩定,因此使用了self-tuning的策略來改良演算法,能克服在資料多尺度時進行異常偵測的問題,最後在實際資料上和經典方法LOF比較。zh_TW
dc.description.abstract (摘要) Data cloud geometry tree is a clustering algorithm that explores data structures by regulated random walk. Based on the concept of data cloud geometry tree, the current study proposes two anomaly detection methods. The first method uses sum of similarities between samples for anomaly detection. The second method explores data through regulated random walk to detect unusual pattern. Samples that were later explored are treated as abnormal. However, the performance of the proposed algorithms are unstable when dealing with multi-scaled simulated data. Therefore, self-tuning strategy is applied to improve the performance of algorithms and to overcome the anomaly detection problem for multi-scaled data. Finally, the performance of proposed methods are compared to the performance resulting from the classical method, LOF, with many real examples.en_US
dc.description.tableofcontents 摘要 i
Abstract ii
表次 v
圖次 vi
第一章 緒論 1
第二章 文獻探討 2
第一節 基於統計 3
第二節 基於與鄰近點的距離 3
第三節 基於密度 4
第四節 基於分群 5
第六節 異常偵測的難點 7
第七節 總結 7
第三章 研究方法 8
第一節 資料雲幾何樹(Data Cloud Geometry Tree,DCGT) 8
一、定義樣本間的相似度 10
二、隨機漫步過程 10
三、建立同群機率矩陣 12
四、決定分群數量 12
五、使用階層式分群進行分群 14
第二節 Regulated Random Walk Outlier Factor(RRWOF) 15
第三節 Similarity Degree Outlier Factor(SDOF) 15
第五節 模擬資料實驗 18
一、溫度尺度(T)=1 21
二、溫度尺度(T)=10 22
三、溫度尺度(T) =100 23
四、小結 24
第五節 溫度自我調整(self-tuning) 25
一、k = 20 26
二、k = 100 27
三、k = 500 28
四、小結 28
第四章 研究過程 29
第一節 評估準則 29
第二節 資料集介紹 32
一、APS Failure at S cania Trucks Data Set(APS Failure) 33
二、Credit Card Fraud Detection data set(Credit Card) 35
三、Epileptic Seizure Recognition Data Set(Epileptic) 37
第三節 實驗流程 40
第五章 實驗結果及結論 41
第一節APS Failure 41
第二節Credit Card 43
第三節Epileptic 45
第四節 小結 47
第六章 結論與未來展望 48
參考文獻 49
zh_TW
dc.format.extent 3882655 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0106354026en_US
dc.subject (關鍵詞) 異常偵測zh_TW
dc.subject (關鍵詞) 相似度zh_TW
dc.subject (關鍵詞) 正規隨機漫步zh_TW
dc.subject (關鍵詞) 多尺度zh_TW
dc.subject (關鍵詞) 自我調整zh_TW
dc.subject (關鍵詞) Anomaly detectionen_US
dc.subject (關鍵詞) Similarityen_US
dc.subject (關鍵詞) Regulated random walken_US
dc.subject (關鍵詞) Multi-scaleen_US
dc.subject (關鍵詞) Self-tuningen_US
dc.title (題名) 使用正規隨機漫步及相似度進行異常偵測zh_TW
dc.title (題名) Anomaly Detection Using Regulated Random Walk and Similarity Degreeen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: identifying density-based local outliers. Paper presented at the ACM sigmod record.
Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM computing surveys (CSUR), 41(3), 15.
Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. Paper presented at the Kdd.
Fushing, H., & McAssey, M. P. (2010). Time, temperature, and data cloud geometry. Phys Rev E Stat Nonlin Soft Matter Phys, 82(6 Pt 1), 061110. doi:10.1103/PhysRevE.82.061110
Goldstein, M. (2012). FastLOF: An expectation-maximization based local outlier detection algorithm. Paper presented at the Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).
Grubbs, F. E. (1950). Sample criteria for testing outlying observations. The Annals of Mathematical Statistics, 21(1), 27-58.
He, Z., Xu, X., & Deng, S. (2003). Discovering cluster-based local outliers. Pattern Recognition Letters, 24(9-10), 1641-1650.
Kriegel, H.-P., & Zimek, A. (2008). Angle-based outlier detection in high-dimensional data. Paper presented at the Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining.
Lazarevic, A., & Kumar, V. (2005). Feature bagging for outlier detection. Paper presented at the Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining.
Lee, Y.-J., Yeh, Y.-R., & Wang, Y.-C. F. (2012). Anomaly detection via online oversampling principal component analysis. IEEE Transactions on Knowledge and Data Engineering, 25(7), 1460-1470.
Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation forest. Paper presented at the 2008 Eighth IEEE International Conference on Data Mining.
Maaten, L. v. d., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine learning research, 9(Nov), 2579-2605.
Ng, A. Y., Jordan, M. I., & Weiss, Y. (2002). On spectral clustering: Analysis and an algorithm. Paper presented at the Advances in neural information processing systems.
Pokrajac, D., Lazarevic, A., & Latecki, L. J. (2007). Incremental local outlier detection for data streams. Paper presented at the 2007 IEEE symposium on computational intelligence and data mining.
Sakurada, M., & Yairi, T. (2014). Anomaly detection using autoencoders with nonlinear dimensionality reduction. Paper presented at the Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis.
Zelnik-Manor, L., & Perona, P. (2005). Self-tuning spectral clustering. Paper presented at the Advances in neural information processing systems.
Zenati, H., Foo, C. S., Lecouat, B., Manek, G., & Chandrasekhar, V. R. (2018). Efficient gan-based anomaly detection. arXiv preprint arXiv:1802.06222.
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU201900895en_US