學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

題名 應用 UAV 光達與移動式光達於立木調查之研究
Individual Tree Investigation Using UAV and Mobile LiDAR
作者 馬慧
Ma, Hui
貢獻者 詹進發
Jan, Jihn-Fa
馬慧
Ma, Hui
關鍵詞 森林調查
立木調查
立木偵測
基本參數測計
空載光達
移動式光達
Forest inventory
Individual tree investigation
Individual tree detection
Basic parameters measurement
Airborne LiDAR
Mobile LiDAR
日期 2021
上傳時間 4-Aug-2021 15:50:38 (UTC+8)
摘要 台灣位於熱帶與亞熱帶氣候交界處,地形起伏大,蘊藏豐富的植被資源,為保存珍貴的自然資源,應更重視森林之管理。進行森林的經營管理之前,需調查森林基本參數以了解森林資源的現況,而立木偵測又為森林資源調查的首要工作,多數的森林調查作業與其相關。過去多以現地測量的方式進行森林資源調查,隨著技術的進步,航空影像及衛星影像亦可運用於調查立木,然兩者均有其限制。高精度、高效率的光達系統可以在短時間內大量求得精確的三維資訊,其多重反射的特性可提供林地垂直結構的資訊,故本研究欲透過光達系統進行立木調查。然而,不同種類的光達系統各具優勢及限制,結合不同光達系統可以克服各自的限制,提供更完整的資訊,因此本研究除了分析空載光達及移動式光達進行立木調查之結果,亦探討結合空載光達及移動式光達應用於立木調查之可行性。
成果顯示利用空載光達進行立木偵測之 recall 值為 0.67、precision 值為 0.76、F-score 值為 0.71;利用移動式光達進行立木偵測之 recall 值為 0.95、 precision 值為 0.77、F-score 值為 0.85;結合空載光達及移動式光達偵測立木之 recall 值為 0.81、precision 值為 0.79、F-score 值為 0.80。而利用空載光達獲取樹高之 RMSE 為 0.94 m,Bias 為 0.14 m;利用移動式光達獲取樹高之 RMSE 為 0.59 m,Bias 為 0.07 m;結合空載光達及移動式光達獲取樹高之 RMSE 值為 0.71 m,Bias 值為 0.31 m。此外,利用移動式光達得以同時獲取立木的胸高直徑,然而,受研究區域內立木生長情形以及樹種之影響,其 RMSE 值為 7.27 cm,Bias 值為 -4.17 cm。研究結果顯示空載光達與移動式光達皆得以應用於立木調查,而相較於僅使用空載光達或移動式光達,結合空載光達及移動式光達提供更精確的立木偵測及基本參數測計結果,有助於提升立木調查之精度。
Taiwan is located at the junction of tropical and subtropical climate zones, with undulating terrain and abundant vegetation resources. To preserve precious forest resources, more attention should be paid to forest management. Before conducting forest management, it is necessary to investigate the basic parameters of the forest to understand the current status of forest resources. Detection of individual tree is the primary task of forest resources inventory, and most forest investigation operations are related to it.
In the past, forest resources inventory were mostly carried out by means of field surveys. With the advancement of technology, aerial and satellite images can also be used to investigate forest resources, but both have their limitations. LiDAR system has the advantages of high precision and high efficiency. It can obtain a large amount of accurate three-dimensional information in a short time. Its multiple reflection characteristics can provide information about the vertical structure of forest stands. Therefore, this study intends to investigate individual tree with LiDAR system. However, different types of LiDAR systems have their own advantages and limitations. Combining different LiDAR systems can overcome their respective limitations and provide more complete information. Therefore, in addition to analyzing the results of airborne LiDAR and mobile LiDAR, this study also explored the feasibility of combining airborne and mobile LiDAR systems for individual tree investigation.
To detect individual trees using LiDAR, for the airborne LiDAR dataset, the values of recall, precision, and F-score are 0.67, 0.76, and 0.71, respectively. For the mobile LiDAR dataset, the values of recall, precision, and F-score are 0.95, 0.77, and 0.85, respectively. For the combined dataset, the values of recall, precision, and F-score are 0.81, 0.79, and 0.80, respectively.
To estimate tree height using LiDAR, for the airborne LiDAR dataset, the values of RMSE and bias are 0.94 m and 0.14 m, respectively. For the mobile LiDAR dataset, the values of RMSE and bias are 0.59 m and 0.07 m, respectively. For the combined dataset, the values of RMSE and bias are 0.71 m and 0.31 m, respectively.
Moreover, by using mobile LiDAR to investigate individual trees, we can measure tree height and DBH (diameter at breast height) at the same time. The results of DBH measurements are 7.27 cm and -4.17 cm for RMSE and bias, respectively. However, the accuracy of DBH estimation can be affected by forest stand structures and trees species.
The results show that both airborne and mobile LiDAR can be used to investigate individual trees. As compared to using only airborne LiDAR, combining airborne and mobile LiDAR dataset can provide better accuracy for tree detection and basic parameters measurements, and thereby improve the accuracy of individual tree investigation.
參考文獻 一、中文參考文獻
江采薇,2006,「融合光達及高解析影像建立三維植生覆蓋模型」,中央大學土木工程研究所碩士論文:桃園。
何心瑜、史天元,2005,「空載光達作業流程及品質管理之研究」,國立交通大學土木工程學系碩士論文:新竹。
李崇誠,2018,「空載光達應用於亞熱帶森林之數值高程模型與立木密度資料之產製」,國立成功大學測量及空間資訊學系博士論文:台南。
李鈺禪,2020,「應用光譜水體指數結合數學形態學於光學影像進行河道變遷偵測之研究」,國立政治大學地政學系碩士論文:台北。
林莉萍,2013,「應用空載光達資料估計森林樹冠高度模型及葉面積指數」,國立成功大學測量及空間資訊學系碩士論文:台南。
邱宜珊,2020,「利用PSInSAR觀察原住民部落之地表形變-以尖石鄉秀巒村為例」,國立政治大學地政學系碩士論文:台北。
施瑩瑄,2005,「應用空載光達獲取林分高之研究」,國立臺灣大學森林環境暨資源學系碩士論文:台北。
耿翊,2018,「利用衛星影像評估莫蘭蒂颱風對金門本島地景變遷及森林恢復之影響」,國立屏東科技大學森林系碩士學位論文:屏東。
馬淑敏,2006,「應用高解析遙測影像進行立木偵測及樹冠描繪」,國立中央大學土木工程研究所碩士論文:桃園。
張瑞文,2007,「應用光達資料於溪頭柳杉人工林分調查之研究」,國立台灣大學生物資源暨農學院森林環境暨資源學系碩士論文:台北。
郭韋侖,2020,「三維建模結合虛擬實境應用於文化資產保存之研究」,國立政治大學地政學系碩士論文:台北。
陳永寬、詹進發、葉堃生、鄭祈全、施瑩瑄,2005,「應用地面雷射掃描儀測算樹高之研究」,『航測及遙測學刊』,10(4):327-336。
黃世涵,2011,「以最小二乘平面套合法進行空載與車載光達點雲套合」,國立交通大學土木工程學系碩士論文:新竹。
黃俊翔,2012,「空載光達於內插方法與不同地形類別精度分析」,國立成功大學地球科學系碩士論文:台南。
楊孟學、吳銘志、劉進金,2016,「多光譜影像與空載光達於山崩植生復育監測之研究」,『航測及遙測學刊』,20(3):171-181。
葉日嫈,2015,「空載光達對立木樹冠及林分競爭解釋能力之探討」,國立屏東科技大學森林系碩士學位論文:屏東。
解宇陽、王彬、姚揚、楊瑯、高媛、張志明、林露湘,2020,「基於無人機激光雷達遙感的亞熱帶常綠闊葉林群落垂直結構分析」,『生態學報』,40(3):940-951。
詹進發,2005,「空載雷射掃描資料於推估樹冠高度之應用」,『航測及遙測學刊』,10(1):1-14。
劉囿維,2010,「應用空載光達資料產製數值高程模型之品質評估」,國立成功大學測量及空間資訊學系碩士論文:台南。
劉魯霞、龐勇,2014,「機載激光雷達和地基激光雷達林業應用現狀」,『世界林業研究』,27(1):49-56。
蕭子淳,2019,「地面雷射掃描系統於樣區尺度之立木測計」,國立屏東科技大學森林系碩士學位論文:屏東。
蕭淳伊,2008,「應用空載光達資料與遙測影像推估樹林分佈及體積」,國立成功大學測量及空間資訊學系碩士論文:台南。
賴君怡,2008,「整合空載光達資料與多光譜影像建立樹木模型-以成大校園為例」,國立成功大學測量及空間資訊學系碩士論文:台南。
魏浚紘,2014,「應用光達技術於人工林之經營與監測」,國立屏東科技大學生物資源研究所博士學位論文:屏東。
魏浚紘、吳守從、彭炳勳、陳朝圳,2010,「應用空載光達建立阿里山地區柳杉人工林之林分材積式」,『地理學報』,59:67-80。
魏浚紘、陳朝圳、彭炳勳、李崇誠、陳建璋,2013,「地面光達應用於林木競爭之研究」,『航測及遙測學刊』,16(4):279-287。
羅詔元、陳良健,2009,「使用空載光達資料萃取森林區立木樹冠」,『航測及遙測學刊』,14(3):201-210。

二、外文參考文獻
Aldred, A. H. and Bonnor, G. M., 1985, "Application of airborne lasers to forest surveys (Vol. 51)".
Bailey, T. and Durrant-Whyte, H., 2006, "Simultaneous localization and mapping (SLAM): Part II" IEEE robotics & automation magazine, 13(3):108-117.
Baltsavias, E. P., 1999, "Airborne laser scanning basic relations and formulas" ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3):199-214.
Baltsavias, E. P., 1999, "A Comparison between photogrammetry and laser scanning" ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3):83-94.
Bartels, M., 2007, Segmentation and classification of terrain features in airborne LIDAR data, Doctoral dissertation, University of Reading, United Kingdom.
Bauwens, S., Bartholomeus, H., Calders, K. and Lejeune, P., 2016, "Forest Inventory with Terrestrial LiDAR: A Comparison of Static and Hand-Held Mobile Laser Scanning" Forests, 7(6):127.
Besl, P. J. and McKay, N. D., 1992, "Method for registration of 3-D shapes." pp. 586-606 in Sensor Fusion IV: Control Paradigms and Data Structures Vol. 1611, edited by Paul S. Schenker.
Bienert, A., Georgi, L., Kunz, M., Maas, H.-G. and Von Oheimb, G., 2018, "Comparison and Combination of Mobile and Terrestrial Laser Scanning for Natural Forest Inventories" Forests, 9(7):395.
Cabo, C., Del Pozo, S., Rodríguez-Gonzálvez, P., Ordóñez, C. and González-Aguilera, D., 2018, "Comparing Terrestrial Laser Scanning (TLS) and Wearable Laser Scanning (WLS) for Individual Tree Modeling at Plot Level" Remote Sensing, 10(4):540.
Camarretta, N., Harrison, P. A., Bailey, T., Potts, B., Lucieer, A., Davidson, N. and Hunt, M., 2020, "Monitoring forest structure to guide adaptive management of forest restoration: a review of remote sensing approaches" New Forests, 51(4):573-596.
Čerňava, J., Mokroš, M., Tuček, J., Antal, M. and Slatkovská, Z., 2019, "Processing Chain for Estimation of Tree Diameter from GNSS-IMU-Based Mobile Laser Scanning Data" Remote Sensing, 11(6):615.
Chen, Q., Baldocchi, D., Gong, P. and Kelly, M., 2006, "Isolating individual trees in a savanna woodland using small footprint lidar data" Photogrammetric Engineering & Remote Sensing, 72(8):923-932.
Chen, S., Liu, H., Feng, Z., Shen, C. and Chen, P., 2019, "Applicability of personal laser scanning in forestry inventory" PLoS One, 14(2):e0211392.
Coops, N. C., Hilker, T., Wulder, M. A., St-Onge, B., Newnham, G., Siggins, A. and Trofymow, J. A., 2007, "Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR" Trees, 21(3):295-310.
Daly, S. F., Vuyovich, C. and Finnegan, D., 2011, Situk River Hydrology Following Closure of Russell Fiord by Hubbard Glacier, U.S.: Engineer Research and Development Center Hanover NH Cold Regions Research and Engineering Lab.
Dassot, M., Constant, T. and Fournier, M., 2011, "The use of terrestrial LiDAR technology in forest science: application fields, benefits and challenges" Annals of Forest Science, 68(5):959-974.
Disney, M. I., Boni Vicari, M., Burt, A., Calders, K., Lewis, S. L., Raumonen, P. and Wilkes, P., 2018, "Weighing trees with lasers: advances, challenges and opportunities" Interface Focus, 8(2):20170048.
Dissanayake, M. G., Newman, P., Clark, S., Durrant-Whyte, H. F. and Csorba, M., 2001, "A solution to the simultaneous localization and map building (SLAM) problem" IEEE Transactions on robotics and automation, 17(3):229-241.
Donoghue, D. N., Watt, P. J., Cox, N. J. and Wilson, J., 2007, "Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data" Remote Sensing of Environment, 110(4):509-522.
Durrant-Whyte, H. and Bailey, T., 2006, "Simultaneous localization and mapping: part I" IEEE robotics & automation magazine, 13(2):99-110.
Fritz, A., Weinacker, H. and Koch, B., 2011, "A method for linking TLS- and ALS-derived trees" Proceedings of SilviLaser, 16-20.
Gleason, C. J. and Im, J., 2012, "Forest biomass estimation from airborne LiDAR data using machine learning approaches" Remote Sensing of Environment, 125:80-91.
Goutte, C. and Gaussier, E., 2005, "A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation", European conference on information retrieval, Springer, Berlin, Heidelberg, March.
Guan, H., Su, Y., Hu, T., Wang, R., Ma, Q., Yang, Q., Sun, X., Li, Y., Jin, S., Zhang, J., Ma, Q., Liu, M., Wu, F. and Guo, Q., 2020, "A Novel Framework to Automatically Fuse Multiplatform LiDAR Data in Forest Environments Based on Tree Locations" IEEE Transactions on Geoscience and Remote Sensing, 58(3):2165-2177.
Guo, Q., Li, W., Yu, H. and Alvarez, O., 2010, "Effects of Topographic Variability and Lidar Sampling Density on Several DEM Interpolation Methods" Photogrammetric Engineering & Remote Sensing, 76(6):701-712.
Gupta, S., Weinacker, H. and Koch, B., 2010, "Comparative Analysis of Clustering-Based Approaches for 3-D Single Tree Detection Using Airborne Fullwave Lidar Data" Remote Sensing, 2(4):968-989.
Heinzel, J. and Huber, M. O., 2017, "Detecting Tree Stems from Volumetric TLS Data in Forest Environments with Rich Understory" Remote Sensing, 9(1):9.
Hilker, T., van Leeuwen, M., Coops, N. C., Wulder, M. A., Newnham, G. J., Jupp, D. L. B. and Culvenor, D. S., 2010, "Comparing canopy metrics derived from terrestrial and airborne laser scanning in a Douglas-fir dominated forest stand" Trees, 24(5):819-832.
Holmgren, J. and Persson, Å., 2004, "Identifying species of individual trees using airborne laser scanner" Remote Sensing of Environment, 90(4):415-423.
Hyyppä, E., Kukko, A., Kaijaluoto, R., White, J. C., Wulder, M. A., Pyörälä, J., Liang, X., Yu, X., Wang, Y., Kaartinen, H., Virtanen, J.-P. and Hyyppä, J., 2020, "Accurate derivation of stem curve and volume using backpack mobile laser scanning" ISPRS Journal of Photogrammetry and Remote Sensing, 161:246-262.
Hyyppä, J., Yu, X., Hyyppä, H., Vastaranta, M., Holopainen, M., Kukko, A., Kaartinen, H., Jaakkola, A., Vaaja, M., Koskinen, J. and Alho, P., 2012, "Advances in Forest Inventory Using Airborne Laser Scanning" Remote Sensing, 4(5):1190-1207.
Jing, L., Hu, B., Li, J. and Noland, T., 2012, "Automated delineation of individual tree crowns from LiDAR data by multi-scale analysis and segmentation" Photogrammetric Engineering & Remote Sensing, 78(12):1275-1284.
Kaartinen, H., Hyyppä, J., Vastaranta, M., Kukko, A., Jaakkola, A., Yu, X., Pyörälä, J., Liang, X., Liu, J., Wang, Y., Kaijaluoto, R., Melkas, T., Holopainen, M. and Hyyppä, H., 2015, "Accuracy of Kinematic Positioning Using Global Satellite Navigation Systems under Forest Canopies" Forests, 6(9):3218-3236.
Kim, S., McGaughey, R. J., Andersen, H.-E. and Schreuder, G., 2009, "Tree species differentiation using intensity data derived from leaf-on and leaf-off airborne laser scanner data" Remote Sensing of Environment, 113(8):1575-1586.
Ko, C., Lee, S., Yim, J., Kim, D. and Kang, J., 2021, "Comparison of Forest Inventory Methods at Plot-Level between a Backpack Personal Laser Scanning (BPLS) and Conventional Equipment in Jeju Island, South Korea" Forests, 12(3):308.
Koch, B., Kattenborn, T., Straub, C. and Vauhkonen, J., 2014, "Segmentation of Forest to Tree Objects" Forestry applications of airborne laser scanning, 89-112.
Kukko, A., Kaartinen, H., Hyyppä, J. and Chen, Y., 2012, "Multiplatform Mobile Laser Scanning: Usability and Performance" Sensors, 12(9):11712-11733.
Kukko, A., Kaijaluoto, R., Kaartinen, H., Lehtola, V. V., Jaakkola, A. and Hyyppä, J., 2017, "Graph SLAM correction for single scanner MLS forest data under boreal forest canopy" ISPRS Journal of Photogrammetry and Remote Sensing, 132:199-209.
Kukkonen, M., Maltamo, M., Korhonen, L. and Packalen, P., 2019, "Multispectral Airborne LiDAR Data in the Prediction of Boreal Tree Species Composition" IEEE Transactions on Geoscience and Remote Sensing, 57(6):3462-3471.
Li, J., Yang, B., Cong, Y., Cao, L., Fu, X. and Dong, Z., 2019, "3D Forest Mapping Using A Low-Cost UAV Laser Scanning System: Investigation and Comparison" Remote Sensing, 11(6):717.
Li, W., Guo, Q., Jakubowski, M. K. and Kelly, M., 2012, "A new method for segmentation individual trees from the LiDAR point cloud" Photogrammetric Engineering & Remote Sensing, 78(1):75-84.
Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A., Haggrén, H., Yu, X., Kaartinen, H., Jaakkola, A., Guan, F., Holopainen, M. and Vastaranta, M., 2016, "Terrestrial laser scanning in forest inventories" ISPRS Journal of Photogrammetry and Remote Sensing, 115:63-77.
Liang, X., Kankare, V., Yu, X., Hyyppä, J. and Holopainen, M., 2014, "Automated Stem Curve Measurement Using Terrestrial Laser Scanning" IEEE Transactions on Geoscience and Remote Sensing, 52(3):1739-1748.
Liang, X., Kukko, A., Hyyppä, J., Lehtomäki, M., Pyörälä, J., Yu, X., Kaartinen, H., Jaakkola, A. and Wang, Y., 2018, "In-situ measurements from mobile platforms: An emerging approach to address the old challenges associated with forest inventories" ISPRS Journal of Photogrammetry and Remote Sensing, 143:97-107.
Liang, X., Kukko, A., Kaartinen, H., Hyyppa, J., Yu, X., Jaakkola, A. and Wang, Y., 2014, "Possibilities of a personal laser scanning system for forest mapping and ecosystem services" Sensors, 14(1):1228-1248.
Lim, K., Treitz, P., Wulder, M., St-Onge, B. and Flood, M., 2003, "LiDAR remote sensing of forest structure" Progress in physical geography, 27(1):88-106.
Lu, J., Wang, H., Qin, S., Cao, L., Pu, R., Li, G. and Sun, J., 2020, "Estimation of aboveground biomass of Robinia pseudoacacia forest in the Yellow River Delta based on UAV and Backpack LiDAR point clouds" International Journal of Applied Earth Observation and Geoinformation, 86:102014.
Lu, X., Guo, Q., Li, W. and Flanagan, J., 2014, "A bottom-up approach to segment individual deciduous trees using leaf-off lidar point cloud data" ISPRS Journal of Photogrammetry and Remote Sensing, 94:1-12.
Matkan, A. A., Hajeb, M., Mirbagheri, B., Sadeghian, S. and Ahmadi, M., 2014, "Spatial Analysis for Outlier Removal from Lidar Data" ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(2):187-190.
Means, J., 1999, "Design capabilities and uses of large-footprint and small-footprint lidar systems" International Archives of the Photogrammetry and Remote Sensing, 32(Part 3):W14.
Morsdorf, F., Meier, E., Allgöwer, B. and Nüesch, D., 2003, "Clustering in airborne laser scanning raw data for segmentation of single trees" International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 34(Part 3):W13.
Morsdorf, F., Meier, E., Kötz, B., Itten, K. I., Dobbertin, M. and Allgöwer, B., 2004, "LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management" Remote Sensing of Environment, 92(3):353-362.
Naesset, E., 1997, "Determination of mean tree height of forest stands using airborne laser scanner data" ISPRS Journal of Photogrammetry and Remote Sensing, 52(2):49-56.
Oveland, I., Hauglin, M., Gobakken, T., Næsset, E. and Maalen-Johansen, I., 2017, "Automatic Estimation of Tree Position and Stem Diameter Using a Moving Terrestrial Laser Scanner" Remote Sensing, 9(4):350.
Paris, C., Kelbe, D., Van Aardt, J. and Bruzzone, L., 2017, "A Novel Automatic Method for the Fusion of ALS and TLS LiDAR Data for Robust Assessment of Tree Crown Structure" IEEE Transactions on Geoscience and Remote Sensing, 55(7):3679-3693.
Polewski, P., Yao, W., Cao, L. and Gao, S., 2019, "Marker-free coregistration of UAV and backpack LiDAR point clouds in forested areas" ISPRS Journal of Photogrammetry and Remote Sensing, 147:307-318.
Popescu, S. C. and Wynne, R. H., 2004, "Seeing the trees in the forest: Using Lidar and Multispectral Data Fusion with Local Filtering and Varible Windiw Size for Estimating Tree Height" Photogrammetric Engineering & Remote Sensing, 70(5):589-604.
Reitberger, J., Schnörr, C., Krzystek, P. and Stilla, U., 2009, "3D segmentation of single trees exploiting full waveform LIDAR data" ISPRS Journal of Photogrammetry and Remote Sensing, 64(6):561-574.
Renslow, M., Greenfield, P. and Guay, T. (2000,November). Evaluation of Multi-Return LIDAR for forestory application. US Department of Agriculture Forest Service-Engineering, Remote Sensing Applications, on the World Wide Web: http://www.forestportal.sk/projekt-monitoring/Documents/USDAFS_LIDAR.pdf
Rosell Polo, J. R., Sanz, R., Llorens, J., Arnó, J., Escolà, A., Ribes-Dasi, M., Masip, J., Camp, F., Gràcia, F., Solanelles, F., Pallejà, T., Val, L., Planas, S., Gil, E. and Palacín, J., 2009, "A tractor-mounted scanning LIDAR for the non-destructive measurement of vegetative volume and surface area of tree-row plantations: A comparison with conventional destructive measurements" Biosystems Engineering, 102(2):128-134.
Shi, Y., Wang, T., Skidmore, A. K. and Heurich, M., 2018, "Important LiDAR metrics for discriminating forest tree species in Central Europe" ISPRS Journal of Photogrammetry and Remote Sensing, 137:163-174.
Song, J. H., Han, S. H., Yu, K. Y. and Kim, Y. I., 2002, "Assessing the possibility of land-cover classification using LiDAR intensity data" International archives of photogrammetry remote sensing and spatial information sciences, 34(3/B):259-262.
Su, Y., Guan, H., Hu, T. and Guo, Q., 2018, "The Integration of Uavand Backpack Lidar Systems for Forest Inventory" IEEE International Geoscience and Remote Sensing Symposium 8757-8760.
Su, Y., Guo, Q., Jin, S., Guan, H., Sun, X., Ma, Q., Hu, T., Wang, R. and Li, Y., 2020, "The Development and Evaluation of a Backpack LiDAR System for Accurate and Efficient Forest Inventory" IEEE Geoscience and Remote Sensing Letters,
Suárez, J. C., Ontiveros, C., Smith, S. and Snape, S., 2005, "Use of airborne LiDAR and aerial photography in the estimation of individual tree heights in forestry" Computers & Geosciences, 31(2):253-262.
Tang, J., Chen, Y., Kukko, A., Kaartinen, H., Jaakkola, A., Khoramshahi, E., Hakala, T., Hyyppä, J., Holopainen, M. and Hyyppä, H., 2015, "SLAM-Aided Stem Mapping for Forest Inventory with Small-Footprint Mobile LiDAR" Forests, 6(12):4588-4606.
Tao, S., Wu, F., Guo, Q., Wang, Y., Li, W., Xue, B., Hu, X., Li, P., Tian, D., Li, C., Yao, H., Li, Y., Xu, G. and Fang, J., 2015, "Segmenting tree crowns from terrestrial and mobile LiDAR data by exploring ecological theories" ISPRS Journal of Photogrammetry and Remote Sensing, 110:66-76.
Tian, J., Dai, T., Li, H., Liao, C., Teng, W., Hu, Q., Ma, W. and Xu, Y., 2019, "A Novel Tree Height Extraction Approach for Individual Trees by Combining TLS and UAV Image-Based Point Cloud Integration" Forests, 10(7):537.
Ussyshkin, V. and Theriault, L., 2011, "Airborne Lidar: Advances in Discrete Return Technology for 3D Vegetation Mapping" Remote Sensing, 3(3):416-434.
Wallace, L., Lucieer, A., Watson, C. and Turner, D., 2012, "Development of a UAV-LiDAR System with Application to Forest Inventory" Remote Sensing, 4(6):1519-1543.
Wang, Y., Lehtomäki, M., Liang, X., Pyörälä, J., Kukko, A., Jaakkola, A., Liu, J., Feng, Z., Chen, R. and Hyyppä, J., 2019, "Is field-measured tree height as reliable as believed – A comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest" ISPRS Journal of Photogrammetry and Remote Sensing, 147:132-145.
Watt, P. J., 2005, An evaluation of LiDAR and optical satellite data for the measurement of structural attributes in British upland conifer plantation forestry, Doctoral dissertation, Durham University, Department of Geography, United Kingdom.
Wehr, A. and Lohr, U., 1999, "Airborne Laser Scanning—An Introduction and overview" ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3):68-82.
White, J. C., Coops, N. C., Wulder, M. A., Vastaranta, M., Hilker, T. and Tompalski, P., 2016, "Remote Sensing Technologies for Enhancing Forest Inventories: A Review" Canadian Journal of Remote Sensing, 42(5):619-641.
Wu, B., Yu, B., Yue, W., Shu, S., Tan, W., Hu, C., Huang, Y., Wu, J. and Liu, H., 2013, "A Voxel-Based Method for Automated Identification and Morphological Parameters Estimation of Individual Street Trees from Mobile Laser Scanning Data" Remote Sensing, 5(2):584-611.
Wulder, M. A., White, J. C., Nelson, R. F., Næsset, E., Ørka, H. O., Coops, N. C., Hilker, T., Bater, C. W. and Gobakken, T., 2012, "Lidar sampling for large-area forest characterization: A review" Remote Sensing of Environment, 121:196-209.
Xu, D., Wang, H., Xu, W., Luan, Z. and Xu, X., 2021, "LiDAR Applications to Estimate Forest Biomass at Individual Tree Scale: Opportunities, Challenges and Future Perspectives" Forests, 12(5):550.
Yan, L., Tan, J., Liu, H., Xie, H. and Chen, C., 2017, "Automatic Registration of TLS-TLS and TLS-MLS Point Clouds Using a Genetic Algorithm" Sensors, 17(9):1979.
Yang, Q., Su, Y., Jin, S., Kelly, M., Hu, T., Ma, Q., Li, Y., Song, S., Zhang, J., Xu, G., Wei, J. and Guo, Q., 2019, "The Influence of Vegetation Characteristics on Individual Tree Segmentation Methods with Airborne LiDAR Data" Remote Sensing, 11(23):2880.
Yu, X., Hyyppä, J., Litkey, P., Kaartinen, H., Vastaranta, M. and Holopainen, M., 2017, "Single-Sensor Solution to Tree Species Classification Using Multispectral Airborne Laser Scanning" Remote Sensing, 9(2):108.
Zawawi, A. A., Shiba, M. and Jemali, N. J. N., 2015, "Accuracy of LiDAR-based tree height estimation and crown recognition in a subtropical evergreen broad-leaved forest in Okinawa, Japan" Forest Systems, 24(1):2.
Zhang, J. and Lin, X., 2013, "Filtering airborne LiDAR data by embedding smoothness-constrained segmentation in progressive TIN densification" ISPRS Journal of Photogrammetry and Remote Sensing, 81:44-59.
Zhao, X., Guo, Q., Su, Y. and Xue, B., 2016, "Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas" ISPRS Journal of Photogrammetry and Remote Sensing, 117:79-91.
Zolkos, S. G., Goetz, S. J. and Dubayah, R., 2013, "A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing" Remote Sensing of Environment, 128:289-298.

三、網頁參考文獻
DJI (2020) DJI Matrice 300 RTK from DJI on the World Wide Web:https://www.dji.com/tw
Geoslam (2020) hand-held lidar from Geoslam on the World Wide Web:https://geoslam.com/
lidar360 (2020) LiBackpack DGC50 from lidar360 on the World Wide Web:https://greenvalleyintl.com/
Livox (2020) Livox Mid-40 from Livox on the World Wide Web:https://www.livoxtech.com/
Renishaw (2020). 車載光達 from Renishaw on the World Wide Web:https://www.renishaw.com.tw/
宏遠儀器(2020). 宏遠儀器有限公司官方網站:http://www.control-signal.com.tw/
政治大學(2019). 政治大學官方網站:https://www.nccu.edu.tw/
描述 碩士
國立政治大學
地政學系
108257008
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0108257008
資料類型 thesis
dc.contributor.advisor 詹進發zh_TW
dc.contributor.advisor Jan, Jihn-Faen_US
dc.contributor.author (Authors) 馬慧zh_TW
dc.contributor.author (Authors) Ma, Huien_US
dc.creator (作者) 馬慧zh_TW
dc.creator (作者) Ma, Huien_US
dc.date (日期) 2021en_US
dc.date.accessioned 4-Aug-2021 15:50:38 (UTC+8)-
dc.date.available 4-Aug-2021 15:50:38 (UTC+8)-
dc.date.issued (上傳時間) 4-Aug-2021 15:50:38 (UTC+8)-
dc.identifier (Other Identifiers) G0108257008en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/136535-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 地政學系zh_TW
dc.description (描述) 108257008zh_TW
dc.description.abstract (摘要) 台灣位於熱帶與亞熱帶氣候交界處,地形起伏大,蘊藏豐富的植被資源,為保存珍貴的自然資源,應更重視森林之管理。進行森林的經營管理之前,需調查森林基本參數以了解森林資源的現況,而立木偵測又為森林資源調查的首要工作,多數的森林調查作業與其相關。過去多以現地測量的方式進行森林資源調查,隨著技術的進步,航空影像及衛星影像亦可運用於調查立木,然兩者均有其限制。高精度、高效率的光達系統可以在短時間內大量求得精確的三維資訊,其多重反射的特性可提供林地垂直結構的資訊,故本研究欲透過光達系統進行立木調查。然而,不同種類的光達系統各具優勢及限制,結合不同光達系統可以克服各自的限制,提供更完整的資訊,因此本研究除了分析空載光達及移動式光達進行立木調查之結果,亦探討結合空載光達及移動式光達應用於立木調查之可行性。
成果顯示利用空載光達進行立木偵測之 recall 值為 0.67、precision 值為 0.76、F-score 值為 0.71;利用移動式光達進行立木偵測之 recall 值為 0.95、 precision 值為 0.77、F-score 值為 0.85;結合空載光達及移動式光達偵測立木之 recall 值為 0.81、precision 值為 0.79、F-score 值為 0.80。而利用空載光達獲取樹高之 RMSE 為 0.94 m,Bias 為 0.14 m;利用移動式光達獲取樹高之 RMSE 為 0.59 m,Bias 為 0.07 m;結合空載光達及移動式光達獲取樹高之 RMSE 值為 0.71 m,Bias 值為 0.31 m。此外,利用移動式光達得以同時獲取立木的胸高直徑,然而,受研究區域內立木生長情形以及樹種之影響,其 RMSE 值為 7.27 cm,Bias 值為 -4.17 cm。研究結果顯示空載光達與移動式光達皆得以應用於立木調查,而相較於僅使用空載光達或移動式光達,結合空載光達及移動式光達提供更精確的立木偵測及基本參數測計結果,有助於提升立木調查之精度。
zh_TW
dc.description.abstract (摘要) Taiwan is located at the junction of tropical and subtropical climate zones, with undulating terrain and abundant vegetation resources. To preserve precious forest resources, more attention should be paid to forest management. Before conducting forest management, it is necessary to investigate the basic parameters of the forest to understand the current status of forest resources. Detection of individual tree is the primary task of forest resources inventory, and most forest investigation operations are related to it.
In the past, forest resources inventory were mostly carried out by means of field surveys. With the advancement of technology, aerial and satellite images can also be used to investigate forest resources, but both have their limitations. LiDAR system has the advantages of high precision and high efficiency. It can obtain a large amount of accurate three-dimensional information in a short time. Its multiple reflection characteristics can provide information about the vertical structure of forest stands. Therefore, this study intends to investigate individual tree with LiDAR system. However, different types of LiDAR systems have their own advantages and limitations. Combining different LiDAR systems can overcome their respective limitations and provide more complete information. Therefore, in addition to analyzing the results of airborne LiDAR and mobile LiDAR, this study also explored the feasibility of combining airborne and mobile LiDAR systems for individual tree investigation.
To detect individual trees using LiDAR, for the airborne LiDAR dataset, the values of recall, precision, and F-score are 0.67, 0.76, and 0.71, respectively. For the mobile LiDAR dataset, the values of recall, precision, and F-score are 0.95, 0.77, and 0.85, respectively. For the combined dataset, the values of recall, precision, and F-score are 0.81, 0.79, and 0.80, respectively.
To estimate tree height using LiDAR, for the airborne LiDAR dataset, the values of RMSE and bias are 0.94 m and 0.14 m, respectively. For the mobile LiDAR dataset, the values of RMSE and bias are 0.59 m and 0.07 m, respectively. For the combined dataset, the values of RMSE and bias are 0.71 m and 0.31 m, respectively.
Moreover, by using mobile LiDAR to investigate individual trees, we can measure tree height and DBH (diameter at breast height) at the same time. The results of DBH measurements are 7.27 cm and -4.17 cm for RMSE and bias, respectively. However, the accuracy of DBH estimation can be affected by forest stand structures and trees species.
The results show that both airborne and mobile LiDAR can be used to investigate individual trees. As compared to using only airborne LiDAR, combining airborne and mobile LiDAR dataset can provide better accuracy for tree detection and basic parameters measurements, and thereby improve the accuracy of individual tree investigation.
en_US
dc.description.tableofcontents 謝誌 I
摘要 III
Abstract V
目錄 VII
圖目錄 IX
表目錄 XI
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 4
第三節 研究架構 5
第二章 文獻回顧 7
第一節 光達技術及原理 7
第二節 光達技術應用於林業調查 15
第三節 光達技術偵測立木之方法 28
第三章 研究方法 35
第一節 研究區域 35
第二節 研究材料與設備 36
第三節 研究流程 41
第四節 研究方法及理論基礎 44
第四章 成果與分析 55
第一節 立木分割成果 55
第二節 立木基本參數成果 73
第五章 結論與建議 85
第一節 結論 85
第二節 建議 87
參考文獻 88
zh_TW
dc.format.extent 3904755 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0108257008en_US
dc.subject (關鍵詞) 森林調查zh_TW
dc.subject (關鍵詞) 立木調查zh_TW
dc.subject (關鍵詞) 立木偵測zh_TW
dc.subject (關鍵詞) 基本參數測計zh_TW
dc.subject (關鍵詞) 空載光達zh_TW
dc.subject (關鍵詞) 移動式光達zh_TW
dc.subject (關鍵詞) Forest inventoryen_US
dc.subject (關鍵詞) Individual tree investigationen_US
dc.subject (關鍵詞) Individual tree detectionen_US
dc.subject (關鍵詞) Basic parameters measurementen_US
dc.subject (關鍵詞) Airborne LiDARen_US
dc.subject (關鍵詞) Mobile LiDARen_US
dc.title (題名) 應用 UAV 光達與移動式光達於立木調查之研究zh_TW
dc.title (題名) Individual Tree Investigation Using UAV and Mobile LiDARen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 一、中文參考文獻
江采薇,2006,「融合光達及高解析影像建立三維植生覆蓋模型」,中央大學土木工程研究所碩士論文:桃園。
何心瑜、史天元,2005,「空載光達作業流程及品質管理之研究」,國立交通大學土木工程學系碩士論文:新竹。
李崇誠,2018,「空載光達應用於亞熱帶森林之數值高程模型與立木密度資料之產製」,國立成功大學測量及空間資訊學系博士論文:台南。
李鈺禪,2020,「應用光譜水體指數結合數學形態學於光學影像進行河道變遷偵測之研究」,國立政治大學地政學系碩士論文:台北。
林莉萍,2013,「應用空載光達資料估計森林樹冠高度模型及葉面積指數」,國立成功大學測量及空間資訊學系碩士論文:台南。
邱宜珊,2020,「利用PSInSAR觀察原住民部落之地表形變-以尖石鄉秀巒村為例」,國立政治大學地政學系碩士論文:台北。
施瑩瑄,2005,「應用空載光達獲取林分高之研究」,國立臺灣大學森林環境暨資源學系碩士論文:台北。
耿翊,2018,「利用衛星影像評估莫蘭蒂颱風對金門本島地景變遷及森林恢復之影響」,國立屏東科技大學森林系碩士學位論文:屏東。
馬淑敏,2006,「應用高解析遙測影像進行立木偵測及樹冠描繪」,國立中央大學土木工程研究所碩士論文:桃園。
張瑞文,2007,「應用光達資料於溪頭柳杉人工林分調查之研究」,國立台灣大學生物資源暨農學院森林環境暨資源學系碩士論文:台北。
郭韋侖,2020,「三維建模結合虛擬實境應用於文化資產保存之研究」,國立政治大學地政學系碩士論文:台北。
陳永寬、詹進發、葉堃生、鄭祈全、施瑩瑄,2005,「應用地面雷射掃描儀測算樹高之研究」,『航測及遙測學刊』,10(4):327-336。
黃世涵,2011,「以最小二乘平面套合法進行空載與車載光達點雲套合」,國立交通大學土木工程學系碩士論文:新竹。
黃俊翔,2012,「空載光達於內插方法與不同地形類別精度分析」,國立成功大學地球科學系碩士論文:台南。
楊孟學、吳銘志、劉進金,2016,「多光譜影像與空載光達於山崩植生復育監測之研究」,『航測及遙測學刊』,20(3):171-181。
葉日嫈,2015,「空載光達對立木樹冠及林分競爭解釋能力之探討」,國立屏東科技大學森林系碩士學位論文:屏東。
解宇陽、王彬、姚揚、楊瑯、高媛、張志明、林露湘,2020,「基於無人機激光雷達遙感的亞熱帶常綠闊葉林群落垂直結構分析」,『生態學報』,40(3):940-951。
詹進發,2005,「空載雷射掃描資料於推估樹冠高度之應用」,『航測及遙測學刊』,10(1):1-14。
劉囿維,2010,「應用空載光達資料產製數值高程模型之品質評估」,國立成功大學測量及空間資訊學系碩士論文:台南。
劉魯霞、龐勇,2014,「機載激光雷達和地基激光雷達林業應用現狀」,『世界林業研究』,27(1):49-56。
蕭子淳,2019,「地面雷射掃描系統於樣區尺度之立木測計」,國立屏東科技大學森林系碩士學位論文:屏東。
蕭淳伊,2008,「應用空載光達資料與遙測影像推估樹林分佈及體積」,國立成功大學測量及空間資訊學系碩士論文:台南。
賴君怡,2008,「整合空載光達資料與多光譜影像建立樹木模型-以成大校園為例」,國立成功大學測量及空間資訊學系碩士論文:台南。
魏浚紘,2014,「應用光達技術於人工林之經營與監測」,國立屏東科技大學生物資源研究所博士學位論文:屏東。
魏浚紘、吳守從、彭炳勳、陳朝圳,2010,「應用空載光達建立阿里山地區柳杉人工林之林分材積式」,『地理學報』,59:67-80。
魏浚紘、陳朝圳、彭炳勳、李崇誠、陳建璋,2013,「地面光達應用於林木競爭之研究」,『航測及遙測學刊』,16(4):279-287。
羅詔元、陳良健,2009,「使用空載光達資料萃取森林區立木樹冠」,『航測及遙測學刊』,14(3):201-210。

二、外文參考文獻
Aldred, A. H. and Bonnor, G. M., 1985, "Application of airborne lasers to forest surveys (Vol. 51)".
Bailey, T. and Durrant-Whyte, H., 2006, "Simultaneous localization and mapping (SLAM): Part II" IEEE robotics & automation magazine, 13(3):108-117.
Baltsavias, E. P., 1999, "Airborne laser scanning basic relations and formulas" ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3):199-214.
Baltsavias, E. P., 1999, "A Comparison between photogrammetry and laser scanning" ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3):83-94.
Bartels, M., 2007, Segmentation and classification of terrain features in airborne LIDAR data, Doctoral dissertation, University of Reading, United Kingdom.
Bauwens, S., Bartholomeus, H., Calders, K. and Lejeune, P., 2016, "Forest Inventory with Terrestrial LiDAR: A Comparison of Static and Hand-Held Mobile Laser Scanning" Forests, 7(6):127.
Besl, P. J. and McKay, N. D., 1992, "Method for registration of 3-D shapes." pp. 586-606 in Sensor Fusion IV: Control Paradigms and Data Structures Vol. 1611, edited by Paul S. Schenker.
Bienert, A., Georgi, L., Kunz, M., Maas, H.-G. and Von Oheimb, G., 2018, "Comparison and Combination of Mobile and Terrestrial Laser Scanning for Natural Forest Inventories" Forests, 9(7):395.
Cabo, C., Del Pozo, S., Rodríguez-Gonzálvez, P., Ordóñez, C. and González-Aguilera, D., 2018, "Comparing Terrestrial Laser Scanning (TLS) and Wearable Laser Scanning (WLS) for Individual Tree Modeling at Plot Level" Remote Sensing, 10(4):540.
Camarretta, N., Harrison, P. A., Bailey, T., Potts, B., Lucieer, A., Davidson, N. and Hunt, M., 2020, "Monitoring forest structure to guide adaptive management of forest restoration: a review of remote sensing approaches" New Forests, 51(4):573-596.
Čerňava, J., Mokroš, M., Tuček, J., Antal, M. and Slatkovská, Z., 2019, "Processing Chain for Estimation of Tree Diameter from GNSS-IMU-Based Mobile Laser Scanning Data" Remote Sensing, 11(6):615.
Chen, Q., Baldocchi, D., Gong, P. and Kelly, M., 2006, "Isolating individual trees in a savanna woodland using small footprint lidar data" Photogrammetric Engineering & Remote Sensing, 72(8):923-932.
Chen, S., Liu, H., Feng, Z., Shen, C. and Chen, P., 2019, "Applicability of personal laser scanning in forestry inventory" PLoS One, 14(2):e0211392.
Coops, N. C., Hilker, T., Wulder, M. A., St-Onge, B., Newnham, G., Siggins, A. and Trofymow, J. A., 2007, "Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR" Trees, 21(3):295-310.
Daly, S. F., Vuyovich, C. and Finnegan, D., 2011, Situk River Hydrology Following Closure of Russell Fiord by Hubbard Glacier, U.S.: Engineer Research and Development Center Hanover NH Cold Regions Research and Engineering Lab.
Dassot, M., Constant, T. and Fournier, M., 2011, "The use of terrestrial LiDAR technology in forest science: application fields, benefits and challenges" Annals of Forest Science, 68(5):959-974.
Disney, M. I., Boni Vicari, M., Burt, A., Calders, K., Lewis, S. L., Raumonen, P. and Wilkes, P., 2018, "Weighing trees with lasers: advances, challenges and opportunities" Interface Focus, 8(2):20170048.
Dissanayake, M. G., Newman, P., Clark, S., Durrant-Whyte, H. F. and Csorba, M., 2001, "A solution to the simultaneous localization and map building (SLAM) problem" IEEE Transactions on robotics and automation, 17(3):229-241.
Donoghue, D. N., Watt, P. J., Cox, N. J. and Wilson, J., 2007, "Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data" Remote Sensing of Environment, 110(4):509-522.
Durrant-Whyte, H. and Bailey, T., 2006, "Simultaneous localization and mapping: part I" IEEE robotics & automation magazine, 13(2):99-110.
Fritz, A., Weinacker, H. and Koch, B., 2011, "A method for linking TLS- and ALS-derived trees" Proceedings of SilviLaser, 16-20.
Gleason, C. J. and Im, J., 2012, "Forest biomass estimation from airborne LiDAR data using machine learning approaches" Remote Sensing of Environment, 125:80-91.
Goutte, C. and Gaussier, E., 2005, "A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation", European conference on information retrieval, Springer, Berlin, Heidelberg, March.
Guan, H., Su, Y., Hu, T., Wang, R., Ma, Q., Yang, Q., Sun, X., Li, Y., Jin, S., Zhang, J., Ma, Q., Liu, M., Wu, F. and Guo, Q., 2020, "A Novel Framework to Automatically Fuse Multiplatform LiDAR Data in Forest Environments Based on Tree Locations" IEEE Transactions on Geoscience and Remote Sensing, 58(3):2165-2177.
Guo, Q., Li, W., Yu, H. and Alvarez, O., 2010, "Effects of Topographic Variability and Lidar Sampling Density on Several DEM Interpolation Methods" Photogrammetric Engineering & Remote Sensing, 76(6):701-712.
Gupta, S., Weinacker, H. and Koch, B., 2010, "Comparative Analysis of Clustering-Based Approaches for 3-D Single Tree Detection Using Airborne Fullwave Lidar Data" Remote Sensing, 2(4):968-989.
Heinzel, J. and Huber, M. O., 2017, "Detecting Tree Stems from Volumetric TLS Data in Forest Environments with Rich Understory" Remote Sensing, 9(1):9.
Hilker, T., van Leeuwen, M., Coops, N. C., Wulder, M. A., Newnham, G. J., Jupp, D. L. B. and Culvenor, D. S., 2010, "Comparing canopy metrics derived from terrestrial and airborne laser scanning in a Douglas-fir dominated forest stand" Trees, 24(5):819-832.
Holmgren, J. and Persson, Å., 2004, "Identifying species of individual trees using airborne laser scanner" Remote Sensing of Environment, 90(4):415-423.
Hyyppä, E., Kukko, A., Kaijaluoto, R., White, J. C., Wulder, M. A., Pyörälä, J., Liang, X., Yu, X., Wang, Y., Kaartinen, H., Virtanen, J.-P. and Hyyppä, J., 2020, "Accurate derivation of stem curve and volume using backpack mobile laser scanning" ISPRS Journal of Photogrammetry and Remote Sensing, 161:246-262.
Hyyppä, J., Yu, X., Hyyppä, H., Vastaranta, M., Holopainen, M., Kukko, A., Kaartinen, H., Jaakkola, A., Vaaja, M., Koskinen, J. and Alho, P., 2012, "Advances in Forest Inventory Using Airborne Laser Scanning" Remote Sensing, 4(5):1190-1207.
Jing, L., Hu, B., Li, J. and Noland, T., 2012, "Automated delineation of individual tree crowns from LiDAR data by multi-scale analysis and segmentation" Photogrammetric Engineering & Remote Sensing, 78(12):1275-1284.
Kaartinen, H., Hyyppä, J., Vastaranta, M., Kukko, A., Jaakkola, A., Yu, X., Pyörälä, J., Liang, X., Liu, J., Wang, Y., Kaijaluoto, R., Melkas, T., Holopainen, M. and Hyyppä, H., 2015, "Accuracy of Kinematic Positioning Using Global Satellite Navigation Systems under Forest Canopies" Forests, 6(9):3218-3236.
Kim, S., McGaughey, R. J., Andersen, H.-E. and Schreuder, G., 2009, "Tree species differentiation using intensity data derived from leaf-on and leaf-off airborne laser scanner data" Remote Sensing of Environment, 113(8):1575-1586.
Ko, C., Lee, S., Yim, J., Kim, D. and Kang, J., 2021, "Comparison of Forest Inventory Methods at Plot-Level between a Backpack Personal Laser Scanning (BPLS) and Conventional Equipment in Jeju Island, South Korea" Forests, 12(3):308.
Koch, B., Kattenborn, T., Straub, C. and Vauhkonen, J., 2014, "Segmentation of Forest to Tree Objects" Forestry applications of airborne laser scanning, 89-112.
Kukko, A., Kaartinen, H., Hyyppä, J. and Chen, Y., 2012, "Multiplatform Mobile Laser Scanning: Usability and Performance" Sensors, 12(9):11712-11733.
Kukko, A., Kaijaluoto, R., Kaartinen, H., Lehtola, V. V., Jaakkola, A. and Hyyppä, J., 2017, "Graph SLAM correction for single scanner MLS forest data under boreal forest canopy" ISPRS Journal of Photogrammetry and Remote Sensing, 132:199-209.
Kukkonen, M., Maltamo, M., Korhonen, L. and Packalen, P., 2019, "Multispectral Airborne LiDAR Data in the Prediction of Boreal Tree Species Composition" IEEE Transactions on Geoscience and Remote Sensing, 57(6):3462-3471.
Li, J., Yang, B., Cong, Y., Cao, L., Fu, X. and Dong, Z., 2019, "3D Forest Mapping Using A Low-Cost UAV Laser Scanning System: Investigation and Comparison" Remote Sensing, 11(6):717.
Li, W., Guo, Q., Jakubowski, M. K. and Kelly, M., 2012, "A new method for segmentation individual trees from the LiDAR point cloud" Photogrammetric Engineering & Remote Sensing, 78(1):75-84.
Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A., Haggrén, H., Yu, X., Kaartinen, H., Jaakkola, A., Guan, F., Holopainen, M. and Vastaranta, M., 2016, "Terrestrial laser scanning in forest inventories" ISPRS Journal of Photogrammetry and Remote Sensing, 115:63-77.
Liang, X., Kankare, V., Yu, X., Hyyppä, J. and Holopainen, M., 2014, "Automated Stem Curve Measurement Using Terrestrial Laser Scanning" IEEE Transactions on Geoscience and Remote Sensing, 52(3):1739-1748.
Liang, X., Kukko, A., Hyyppä, J., Lehtomäki, M., Pyörälä, J., Yu, X., Kaartinen, H., Jaakkola, A. and Wang, Y., 2018, "In-situ measurements from mobile platforms: An emerging approach to address the old challenges associated with forest inventories" ISPRS Journal of Photogrammetry and Remote Sensing, 143:97-107.
Liang, X., Kukko, A., Kaartinen, H., Hyyppa, J., Yu, X., Jaakkola, A. and Wang, Y., 2014, "Possibilities of a personal laser scanning system for forest mapping and ecosystem services" Sensors, 14(1):1228-1248.
Lim, K., Treitz, P., Wulder, M., St-Onge, B. and Flood, M., 2003, "LiDAR remote sensing of forest structure" Progress in physical geography, 27(1):88-106.
Lu, J., Wang, H., Qin, S., Cao, L., Pu, R., Li, G. and Sun, J., 2020, "Estimation of aboveground biomass of Robinia pseudoacacia forest in the Yellow River Delta based on UAV and Backpack LiDAR point clouds" International Journal of Applied Earth Observation and Geoinformation, 86:102014.
Lu, X., Guo, Q., Li, W. and Flanagan, J., 2014, "A bottom-up approach to segment individual deciduous trees using leaf-off lidar point cloud data" ISPRS Journal of Photogrammetry and Remote Sensing, 94:1-12.
Matkan, A. A., Hajeb, M., Mirbagheri, B., Sadeghian, S. and Ahmadi, M., 2014, "Spatial Analysis for Outlier Removal from Lidar Data" ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(2):187-190.
Means, J., 1999, "Design capabilities and uses of large-footprint and small-footprint lidar systems" International Archives of the Photogrammetry and Remote Sensing, 32(Part 3):W14.
Morsdorf, F., Meier, E., Allgöwer, B. and Nüesch, D., 2003, "Clustering in airborne laser scanning raw data for segmentation of single trees" International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 34(Part 3):W13.
Morsdorf, F., Meier, E., Kötz, B., Itten, K. I., Dobbertin, M. and Allgöwer, B., 2004, "LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management" Remote Sensing of Environment, 92(3):353-362.
Naesset, E., 1997, "Determination of mean tree height of forest stands using airborne laser scanner data" ISPRS Journal of Photogrammetry and Remote Sensing, 52(2):49-56.
Oveland, I., Hauglin, M., Gobakken, T., Næsset, E. and Maalen-Johansen, I., 2017, "Automatic Estimation of Tree Position and Stem Diameter Using a Moving Terrestrial Laser Scanner" Remote Sensing, 9(4):350.
Paris, C., Kelbe, D., Van Aardt, J. and Bruzzone, L., 2017, "A Novel Automatic Method for the Fusion of ALS and TLS LiDAR Data for Robust Assessment of Tree Crown Structure" IEEE Transactions on Geoscience and Remote Sensing, 55(7):3679-3693.
Polewski, P., Yao, W., Cao, L. and Gao, S., 2019, "Marker-free coregistration of UAV and backpack LiDAR point clouds in forested areas" ISPRS Journal of Photogrammetry and Remote Sensing, 147:307-318.
Popescu, S. C. and Wynne, R. H., 2004, "Seeing the trees in the forest: Using Lidar and Multispectral Data Fusion with Local Filtering and Varible Windiw Size for Estimating Tree Height" Photogrammetric Engineering & Remote Sensing, 70(5):589-604.
Reitberger, J., Schnörr, C., Krzystek, P. and Stilla, U., 2009, "3D segmentation of single trees exploiting full waveform LIDAR data" ISPRS Journal of Photogrammetry and Remote Sensing, 64(6):561-574.
Renslow, M., Greenfield, P. and Guay, T. (2000,November). Evaluation of Multi-Return LIDAR for forestory application. US Department of Agriculture Forest Service-Engineering, Remote Sensing Applications, on the World Wide Web: http://www.forestportal.sk/projekt-monitoring/Documents/USDAFS_LIDAR.pdf
Rosell Polo, J. R., Sanz, R., Llorens, J., Arnó, J., Escolà, A., Ribes-Dasi, M., Masip, J., Camp, F., Gràcia, F., Solanelles, F., Pallejà, T., Val, L., Planas, S., Gil, E. and Palacín, J., 2009, "A tractor-mounted scanning LIDAR for the non-destructive measurement of vegetative volume and surface area of tree-row plantations: A comparison with conventional destructive measurements" Biosystems Engineering, 102(2):128-134.
Shi, Y., Wang, T., Skidmore, A. K. and Heurich, M., 2018, "Important LiDAR metrics for discriminating forest tree species in Central Europe" ISPRS Journal of Photogrammetry and Remote Sensing, 137:163-174.
Song, J. H., Han, S. H., Yu, K. Y. and Kim, Y. I., 2002, "Assessing the possibility of land-cover classification using LiDAR intensity data" International archives of photogrammetry remote sensing and spatial information sciences, 34(3/B):259-262.
Su, Y., Guan, H., Hu, T. and Guo, Q., 2018, "The Integration of Uavand Backpack Lidar Systems for Forest Inventory" IEEE International Geoscience and Remote Sensing Symposium 8757-8760.
Su, Y., Guo, Q., Jin, S., Guan, H., Sun, X., Ma, Q., Hu, T., Wang, R. and Li, Y., 2020, "The Development and Evaluation of a Backpack LiDAR System for Accurate and Efficient Forest Inventory" IEEE Geoscience and Remote Sensing Letters,
Suárez, J. C., Ontiveros, C., Smith, S. and Snape, S., 2005, "Use of airborne LiDAR and aerial photography in the estimation of individual tree heights in forestry" Computers & Geosciences, 31(2):253-262.
Tang, J., Chen, Y., Kukko, A., Kaartinen, H., Jaakkola, A., Khoramshahi, E., Hakala, T., Hyyppä, J., Holopainen, M. and Hyyppä, H., 2015, "SLAM-Aided Stem Mapping for Forest Inventory with Small-Footprint Mobile LiDAR" Forests, 6(12):4588-4606.
Tao, S., Wu, F., Guo, Q., Wang, Y., Li, W., Xue, B., Hu, X., Li, P., Tian, D., Li, C., Yao, H., Li, Y., Xu, G. and Fang, J., 2015, "Segmenting tree crowns from terrestrial and mobile LiDAR data by exploring ecological theories" ISPRS Journal of Photogrammetry and Remote Sensing, 110:66-76.
Tian, J., Dai, T., Li, H., Liao, C., Teng, W., Hu, Q., Ma, W. and Xu, Y., 2019, "A Novel Tree Height Extraction Approach for Individual Trees by Combining TLS and UAV Image-Based Point Cloud Integration" Forests, 10(7):537.
Ussyshkin, V. and Theriault, L., 2011, "Airborne Lidar: Advances in Discrete Return Technology for 3D Vegetation Mapping" Remote Sensing, 3(3):416-434.
Wallace, L., Lucieer, A., Watson, C. and Turner, D., 2012, "Development of a UAV-LiDAR System with Application to Forest Inventory" Remote Sensing, 4(6):1519-1543.
Wang, Y., Lehtomäki, M., Liang, X., Pyörälä, J., Kukko, A., Jaakkola, A., Liu, J., Feng, Z., Chen, R. and Hyyppä, J., 2019, "Is field-measured tree height as reliable as believed – A comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest" ISPRS Journal of Photogrammetry and Remote Sensing, 147:132-145.
Watt, P. J., 2005, An evaluation of LiDAR and optical satellite data for the measurement of structural attributes in British upland conifer plantation forestry, Doctoral dissertation, Durham University, Department of Geography, United Kingdom.
Wehr, A. and Lohr, U., 1999, "Airborne Laser Scanning—An Introduction and overview" ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3):68-82.
White, J. C., Coops, N. C., Wulder, M. A., Vastaranta, M., Hilker, T. and Tompalski, P., 2016, "Remote Sensing Technologies for Enhancing Forest Inventories: A Review" Canadian Journal of Remote Sensing, 42(5):619-641.
Wu, B., Yu, B., Yue, W., Shu, S., Tan, W., Hu, C., Huang, Y., Wu, J. and Liu, H., 2013, "A Voxel-Based Method for Automated Identification and Morphological Parameters Estimation of Individual Street Trees from Mobile Laser Scanning Data" Remote Sensing, 5(2):584-611.
Wulder, M. A., White, J. C., Nelson, R. F., Næsset, E., Ørka, H. O., Coops, N. C., Hilker, T., Bater, C. W. and Gobakken, T., 2012, "Lidar sampling for large-area forest characterization: A review" Remote Sensing of Environment, 121:196-209.
Xu, D., Wang, H., Xu, W., Luan, Z. and Xu, X., 2021, "LiDAR Applications to Estimate Forest Biomass at Individual Tree Scale: Opportunities, Challenges and Future Perspectives" Forests, 12(5):550.
Yan, L., Tan, J., Liu, H., Xie, H. and Chen, C., 2017, "Automatic Registration of TLS-TLS and TLS-MLS Point Clouds Using a Genetic Algorithm" Sensors, 17(9):1979.
Yang, Q., Su, Y., Jin, S., Kelly, M., Hu, T., Ma, Q., Li, Y., Song, S., Zhang, J., Xu, G., Wei, J. and Guo, Q., 2019, "The Influence of Vegetation Characteristics on Individual Tree Segmentation Methods with Airborne LiDAR Data" Remote Sensing, 11(23):2880.
Yu, X., Hyyppä, J., Litkey, P., Kaartinen, H., Vastaranta, M. and Holopainen, M., 2017, "Single-Sensor Solution to Tree Species Classification Using Multispectral Airborne Laser Scanning" Remote Sensing, 9(2):108.
Zawawi, A. A., Shiba, M. and Jemali, N. J. N., 2015, "Accuracy of LiDAR-based tree height estimation and crown recognition in a subtropical evergreen broad-leaved forest in Okinawa, Japan" Forest Systems, 24(1):2.
Zhang, J. and Lin, X., 2013, "Filtering airborne LiDAR data by embedding smoothness-constrained segmentation in progressive TIN densification" ISPRS Journal of Photogrammetry and Remote Sensing, 81:44-59.
Zhao, X., Guo, Q., Su, Y. and Xue, B., 2016, "Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas" ISPRS Journal of Photogrammetry and Remote Sensing, 117:79-91.
Zolkos, S. G., Goetz, S. J. and Dubayah, R., 2013, "A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing" Remote Sensing of Environment, 128:289-298.

三、網頁參考文獻
DJI (2020) DJI Matrice 300 RTK from DJI on the World Wide Web:https://www.dji.com/tw
Geoslam (2020) hand-held lidar from Geoslam on the World Wide Web:https://geoslam.com/
lidar360 (2020) LiBackpack DGC50 from lidar360 on the World Wide Web:https://greenvalleyintl.com/
Livox (2020) Livox Mid-40 from Livox on the World Wide Web:https://www.livoxtech.com/
Renishaw (2020). 車載光達 from Renishaw on the World Wide Web:https://www.renishaw.com.tw/
宏遠儀器(2020). 宏遠儀器有限公司官方網站:http://www.control-signal.com.tw/
政治大學(2019). 政治大學官方網站:https://www.nccu.edu.tw/
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU202101131en_US