學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

題名 多星系GNSS精密單點定位技術應用於監測建物牆壁上結構位移之能力分析
Ability Analysis for Monitoring Structural Displacements on The Wall using multi-constellation GNSS Precise Point Positioning Technology
作者 陳胤維
Chen, Yin-Wei
貢獻者 儲豐宥
Chu, Feng-Yu
陳胤維
Chen, Yin-Wei
關鍵詞 精密單點定位
建物結構長期位移
建物結構震動位移
牆上監測
precise point positioning
structural long-term displacement
structural vibration displacement
GNSS monitoring on the wall
日期 2022
上傳時間 2-Sep-2022 15:20:57 (UTC+8)
摘要 為了保障人們的生命財產安全,監測建物結構的長期位移與震動位移是重要的。全球導航定位系統(Global Navigation Satellite System, GNSS)之精密單點定位(Precise Point Positioning, PPP)技術無須使用額外的地面主站,並且能夠獲得公分級定位坐標,因此已經廣泛的應用於建物結構位移監測上。考量到衛星遮蔽的問題,衛星接收儀普遍被架設於建物頂端。然而,建物並非剛體,因此必須透過均勻監測建物各個部位,才能獲得整體建物結構的位移,也就是包含建物頂部以及牆壁的部分。
結合多星系 GNSS 可有效提升可視衛星顆數,這使得衛星遮蔽的影響可以被降低。考量到結合多星系 GNSS 的大量可視衛星顆數以及 PPP 技術的優點,結合式 GNSS PPP 技術對於監測建物牆壁上結構位移會是一個有潛力的方法,但是其能力分析未有人提出,因此本研究嘗試使用五星系(GPS/Galileo/GLONASS/BDS/QZSS) PPP 於監測建物牆壁上結構位移並分析其能力,並針對建物結構長期位移以及震動位移兩方面進行探討。
為了保障人們的生命財產安全,監測建物結構的長期位移與震動位移是重要的。全球導航定位系統(Global Navigation Satellite System, GNSS)之精密單點定位(Precise Point Positioning, PPP)技術無須使用額外的地面主站,並且能夠獲得公分級定位坐標,因此已經廣泛的應用於建物結構位移監測上。考量到衛星遮蔽的問題,衛星接收儀普遍被架設於建物頂端。然而,建物並非剛體,因此必須透過均勻監測建物各個部位,才能獲得整體建物結構的位移,也就是包含建物頂部以及牆壁的部分。
結合多星系 GNSS 可有效提升可視衛星顆數,這使得衛星遮蔽的影響可以被降低。考量到結合多星系 GNSS 的大量可視衛星顆數以及 PPP 技術的優點,結合式 GNSS PPP 技術對於監測建物牆壁上結構位移會是一個有潛力的方法,但是其能力分析未有人提出,因此本研究嘗試使用五星系(GPS/Galileo/GLONASS/BDS/QZSS) PPP 於監測建物牆壁上結構位移並分析其能力,並針對建物結構長期位移以及震動位移兩方面進行探討。
分析中,我們採用了架設於透空環境的衛星連續站,考慮到接收儀架設於建物牆壁上將面臨的遮蔽問題,我們刪除了半邊天的衛星觀測量,以及給定了數種不同仰角遮蔽的條件。於長期位移監測的分析中,成果顯示,使用五星系 PPP 在平面方向的能力優於 GPS PPP,並且指出一旦測站的每日解定位精度大於5mm,監測能力將會明顯降低。於震動位移監測的分析中,我們產生的模擬震動位移呈現於GNSS觀測量上,並透過快速傅立葉轉換來分析震動位移的監測能力。成果顯示,使用五星系 PPP 的監測能力優於 GPS PPP,在平面方向的監測能力優於高程方向,以及偵測高頻震動位移的能力優於低頻震動位移。除此之外,我們額外提出了一種具有位置約制條件的 PPP(Constrained PPP, CPPP)來改善傳統 PPP 於震動位移監測的能力。成果顯示,使用 CPPP 能夠更進一步的改善監測微小振幅震動位移(e.g., 0.5cm左右)的能力。
The monitoring of structural long-term and vibration displacements is important to the safety and property of people. Since GNSS (Global Navigation Satellite System) PPP (Precise Point Positioning) requires only one receiver and the positioning accuracy is centimeter-level, it has been widely applied to the monitoring of structural displacements. Considering the satellite blocking effect, a receiver regularly is set on the top of a structure. However, since a structure is not a rigid body, in order to obtain the displacements on the whole structure, it’s required to set receivers evenly on the structure, including on the wall.
The number of visible satellites of combined GNSS has been much more than that of GPS. It is helpful to alleviate the satellite blocking effect. Considering the advantages of PPP technology and the great number of visible satellites provided by combined GNSS, combined GNSS PPP technology is a potential means to the monitoring of structural displacements on the wall. Since the ability analysis has not been proposed yet, the study try to use five-constellation GNSS (GPS/Galileo/GLONASS/BDS/QZSS) PPP to monitor structural displacements on the wall and analyze the ability of the monitoring. The monitoring of structural long-term and vibration displacements are discussed in the study.
In the analysis, measurements are collected from continuous GNSS stations which are set in open-sky environments. Considering the satellite blocking effect when setting the receiver on the wall, we remove certain satellites by different cut-off azimuths and cut-off angles. In the analysis of the long-term displacements, the result shows that the ability of using five-constellation GNSS PPP is better than that of GPS PPP in horizontal direction. Moreover, when the sigma of PPP daily solution is greater than 5mm, the ability will decrease obviously. In the analysis of the vibration displacements, the vibration displacements are simulated in the measurements. Then, we use fast Fourier transform to analyze the ability. The result shows that the ability of using five-constellation GNSS PPP is better than that of GPS PPP. Moreover, a constrained PPP (CPPP) is proposed to improve the ability of monitoring. The result shows that CPPP can improve the ability of monitoring small vibration displacements (e.g., 0.5cm).
參考文獻 王昱凡、陳國華(2020)。臺灣水平地表變形模式精度分析與應用。國土測繪與空間資訊,8(2),61–77。

廖文正、高健鈞、黃禾程、黃炳勳、蔣啟恆(2021)。以資料庫回歸台灣混凝土潛變預測公式並應用於預力橋梁長期變位分析。結構工程,36(1),93–111。

Carpinteri, A., Lacidogna, G. (2006) Damage monitoring of an historical masonry building by the acoustic emission technique. Materials and Structures 39(2):161-167.

Chu, F.-Y., Yang, M. (2014) GPS/Galileo long baseline computation: method and performance analyses. GPS Solutions 18(2):263-272.

Dat, B. T., Traykov, A., Traykova, M. (2018) Shear-lag effect and its effect on the design of high-rise buildings. In: High-Rise Construction, Samara, Russia, September 4-8.

Deng, C., Tang, W., Liu, J., Shi, C. (2013) Reliable single-epoch ambiguity resolution for short baselines using combined GPS/BeiDou system. GPS Solutions 18(3):375–386.

Eitzenberger A (2008) Train-induced vibrations in tunnels – a review. Lulea University of Technology, Sweden.

Farrar, C. R., Worden, K. (2007) An introduction to structural health monitoring. Philosophical Transactions of the Royal Society A 365(1851):303–315.

Franzius, J. N., Potts, D. M., Addenbrooke, T. I., Burland, J. B. (2004) The influence of building weight on tunnelling-induced ground and building deformation. Soils and Foundations 44(1):25-38.

Gokdemir, H., Ozbasaran, H., Dogan, M., Unluoglu, E., Albayrak, U. (2013) Effects of torsional irregularity to structures during earthquakes. Engineering Failure Analysis 35:713-717.

Goad, C. C. (1974). A modified Hopfield tropospheric refraction correction model. Fall In: Annual Meeting, San Francisco, California, December 10–13.

Guan, Z., Jiang, Y., Tanabashi, Y. (2008) Rheological parameter estimation for the prediction of long-term deformations in conventional tunneling. Tunnelling and Underground Space Technology 24(3):250-259.

Gu, H., Wang, T., Zhu, Y., Wang, C., Yang, D., Huang, L. (2021) A completion method for missing concrete dam deformation monitoring data pieces. Applied Sciences 11(1):463.

Kovacevic, I., Dzidic, S. (2018) Lateral and accidental actions – risk of progressive collapse in high-rise buildings. In: Contemporary achievements in civil engineering, Subotica, Serbia, April 20.

Leick, A., Rapoport, L., Tatarnikov, D. (2015). GPS satellite surveying. John Wiley & Sons, New Jersey.

Li, H.-N., Li, D.-S., Song, G.-B. (2004) Recent applications of fiber optic sensors to health monitoring in civil engineering. Engineering Structures 26(11):1647-1657.

Lovse, J. W., Teskey, W. F., Lachapelle, G., Cannon, M. E. (1995) Dynamic deformation monitoring of tall stucture using GPS technology. Journal of Surveying Engineering 121(1):35-40.

Matsumoto, K., Takanezawa, T., & Ooe, M. (2000). Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: a global model and a regional model around Japan. Journal of Oceanography 56(5):567-581.

Moschas, F., Stiros, S. (2013) Noise characteristics of high-frequency, short-duration GPS records from analysis of identical, collocated instruments. Measurement 46(4):1488-1506.

Niell, A. E. (1996) Global mapping functions for the atmosphere delay at radio wavelengths. Journal of Geophysical Research 101(B2):1978-2012.

Nyquist, H. (1928) Thermal agitation of electric charge in conductors. Physical Review 32(1):110-113

O`Keefe, K. (2001) Availability and reliability advantages of GPS/Galileo integration. In: ION GPS, Salt Lake City, Utah.

Park, H. S., Shon, H. G., Kim, I. S., Park, J. H. (2004) Monitoring of structural behavior of high-rise buildings using GPS. In: CTBUH, Seoul, Korean.

Shen, N., Chen, L., Liu, J., Wang, L., Tao, T., Wu, D., Chen, R. (2019) A review of global navigation satellite system (GNSS)-based dynamic monitoring technologies for structural health monitoring. Remote Sensing 11(9):1001.

Shi, J., Xu, C., Guo, J., Gao Y. (2015) Real-time GPS precise point positioning-based precipitable water vapor estimation for rainfall monitoring and forecasting. (2015) IEEE Transactions on Geoscience and Remote Sensing 53(6): 3452-3459.

Takahashi, S., Kubo, N., Yamaguchi, N., Yokoshima, T. (2018) Real-time monitoring of structure movements using low-cost, wall-mounted, hand-held RTK-GNSS receivers. In: ION GNSS+, Miami, Florida, September 24–28.

Teunissen, P. J. G., Montenbruck, O. (2017) Handbook of global navigation satellite systems. Springer, Switzerland.

Ubertini, F., Cavalagli, N., Kita, A., Comanducci, G. (2018) Assessment of a monumental masonry bell-tower after 2016 Central Italy seismic sequence by long-term SHM. Bulletin of Earthquake Engineering 16(2):775–801.

Wu, J. T., Wu, S. C., Hajj, G. A., Bertiger, W. I., Lichten, S. M. (1993) Effects of antenna orientation on GPS carrier phase. Manuscripta Geodaetia 18(2):91-98.

Xiong, C., Niu, Y. (2018) Investigation of the dynamic behavior of a super high-rise structure using RTK-GNSS technique. KSCE Journal of Civil Engineering 23(2):654-665.

Xu, Guochang. (2007). GPS: Theory, Algorithms and Applications. Springer-Verlag, Berlin.

Yi, T., Li, H., Gu, M. (2010) Full-scale measurements of dynamic response of suspension bridge subjected to environmental loads using GPS technology. Science China Technological Sciences 53(2):469-479.

Yu, J., Yan, B., Meng, X., Shao, X., Ye, H. (2016) Measurement of bridge dynamic responses using network-based real-time kinematic GNSS technique. Journal of Surveying Engineering 142(3):04015013.

Zhang, D., Yu, Z., Xu, Y., Ding, L., Ding, H., Yu, Q., Su, Z. (2022) GNSS aided long-range 3D displacement sensing for high-rise structures with two non-overlapping cameras. Remote Sensing 14(2):379.

Zhang, X., Zhang, Y., Li, B., Qiu, G. (2018) GNSS-Based Verticality Monitoring of Super-Tall Buildings. Applied Sciences 8(6):991.
描述 碩士
國立政治大學
地政學系
109257030
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0109257030
資料類型 thesis
dc.contributor.advisor 儲豐宥zh_TW
dc.contributor.advisor Chu, Feng-Yuen_US
dc.contributor.author (Authors) 陳胤維zh_TW
dc.contributor.author (Authors) Chen, Yin-Weien_US
dc.creator (作者) 陳胤維zh_TW
dc.creator (作者) Chen, Yin-Weien_US
dc.date (日期) 2022en_US
dc.date.accessioned 2-Sep-2022 15:20:57 (UTC+8)-
dc.date.available 2-Sep-2022 15:20:57 (UTC+8)-
dc.date.issued (上傳時間) 2-Sep-2022 15:20:57 (UTC+8)-
dc.identifier (Other Identifiers) G0109257030en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/141715-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 地政學系zh_TW
dc.description (描述) 109257030zh_TW
dc.description.abstract (摘要) 為了保障人們的生命財產安全,監測建物結構的長期位移與震動位移是重要的。全球導航定位系統(Global Navigation Satellite System, GNSS)之精密單點定位(Precise Point Positioning, PPP)技術無須使用額外的地面主站,並且能夠獲得公分級定位坐標,因此已經廣泛的應用於建物結構位移監測上。考量到衛星遮蔽的問題,衛星接收儀普遍被架設於建物頂端。然而,建物並非剛體,因此必須透過均勻監測建物各個部位,才能獲得整體建物結構的位移,也就是包含建物頂部以及牆壁的部分。
結合多星系 GNSS 可有效提升可視衛星顆數,這使得衛星遮蔽的影響可以被降低。考量到結合多星系 GNSS 的大量可視衛星顆數以及 PPP 技術的優點,結合式 GNSS PPP 技術對於監測建物牆壁上結構位移會是一個有潛力的方法,但是其能力分析未有人提出,因此本研究嘗試使用五星系(GPS/Galileo/GLONASS/BDS/QZSS) PPP 於監測建物牆壁上結構位移並分析其能力,並針對建物結構長期位移以及震動位移兩方面進行探討。
為了保障人們的生命財產安全,監測建物結構的長期位移與震動位移是重要的。全球導航定位系統(Global Navigation Satellite System, GNSS)之精密單點定位(Precise Point Positioning, PPP)技術無須使用額外的地面主站,並且能夠獲得公分級定位坐標,因此已經廣泛的應用於建物結構位移監測上。考量到衛星遮蔽的問題,衛星接收儀普遍被架設於建物頂端。然而,建物並非剛體,因此必須透過均勻監測建物各個部位,才能獲得整體建物結構的位移,也就是包含建物頂部以及牆壁的部分。
結合多星系 GNSS 可有效提升可視衛星顆數,這使得衛星遮蔽的影響可以被降低。考量到結合多星系 GNSS 的大量可視衛星顆數以及 PPP 技術的優點,結合式 GNSS PPP 技術對於監測建物牆壁上結構位移會是一個有潛力的方法,但是其能力分析未有人提出,因此本研究嘗試使用五星系(GPS/Galileo/GLONASS/BDS/QZSS) PPP 於監測建物牆壁上結構位移並分析其能力,並針對建物結構長期位移以及震動位移兩方面進行探討。
分析中,我們採用了架設於透空環境的衛星連續站,考慮到接收儀架設於建物牆壁上將面臨的遮蔽問題,我們刪除了半邊天的衛星觀測量,以及給定了數種不同仰角遮蔽的條件。於長期位移監測的分析中,成果顯示,使用五星系 PPP 在平面方向的能力優於 GPS PPP,並且指出一旦測站的每日解定位精度大於5mm,監測能力將會明顯降低。於震動位移監測的分析中,我們產生的模擬震動位移呈現於GNSS觀測量上,並透過快速傅立葉轉換來分析震動位移的監測能力。成果顯示,使用五星系 PPP 的監測能力優於 GPS PPP,在平面方向的監測能力優於高程方向,以及偵測高頻震動位移的能力優於低頻震動位移。除此之外,我們額外提出了一種具有位置約制條件的 PPP(Constrained PPP, CPPP)來改善傳統 PPP 於震動位移監測的能力。成果顯示,使用 CPPP 能夠更進一步的改善監測微小振幅震動位移(e.g., 0.5cm左右)的能力。
zh_TW
dc.description.abstract (摘要) The monitoring of structural long-term and vibration displacements is important to the safety and property of people. Since GNSS (Global Navigation Satellite System) PPP (Precise Point Positioning) requires only one receiver and the positioning accuracy is centimeter-level, it has been widely applied to the monitoring of structural displacements. Considering the satellite blocking effect, a receiver regularly is set on the top of a structure. However, since a structure is not a rigid body, in order to obtain the displacements on the whole structure, it’s required to set receivers evenly on the structure, including on the wall.
The number of visible satellites of combined GNSS has been much more than that of GPS. It is helpful to alleviate the satellite blocking effect. Considering the advantages of PPP technology and the great number of visible satellites provided by combined GNSS, combined GNSS PPP technology is a potential means to the monitoring of structural displacements on the wall. Since the ability analysis has not been proposed yet, the study try to use five-constellation GNSS (GPS/Galileo/GLONASS/BDS/QZSS) PPP to monitor structural displacements on the wall and analyze the ability of the monitoring. The monitoring of structural long-term and vibration displacements are discussed in the study.
In the analysis, measurements are collected from continuous GNSS stations which are set in open-sky environments. Considering the satellite blocking effect when setting the receiver on the wall, we remove certain satellites by different cut-off azimuths and cut-off angles. In the analysis of the long-term displacements, the result shows that the ability of using five-constellation GNSS PPP is better than that of GPS PPP in horizontal direction. Moreover, when the sigma of PPP daily solution is greater than 5mm, the ability will decrease obviously. In the analysis of the vibration displacements, the vibration displacements are simulated in the measurements. Then, we use fast Fourier transform to analyze the ability. The result shows that the ability of using five-constellation GNSS PPP is better than that of GPS PPP. Moreover, a constrained PPP (CPPP) is proposed to improve the ability of monitoring. The result shows that CPPP can improve the ability of monitoring small vibration displacements (e.g., 0.5cm).
en_US
dc.description.tableofcontents 謝辭 I
摘要 II
Abstract III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1 研究背景與文獻回顧 1
1.2 研究動機與目的 4
第二章 GNSS 觀測量及誤差 5
2.1 GNSS觀測量 5
2.2 GNSS觀測量誤差 7
2.2.1 軌道誤差 7
2.2.2 時錶誤差 8
2.2.3 衛星天線盤相位中心誤差 8
2.2.4 相位轉繞(Phase wind-up)誤差 9
2.2.5 相對論誤差 9
2.2.6 電離層延遲誤差 10
2.2.7 對流層延遲誤差 11
2.2.8 地球固體潮(Solid Earth Tide) 11
2.2.9 多路徑效應 12
第三章 研究方法 13
3.1 PPP數學模型 13
3.1.1 觀測方程式之系統誤差改正 13
3.1.2 星間一次差分觀測方程式 14
3.1.3 PPP模型 16
3.1.4 具有位置約制條件的PPP模型(Constrained PPP, CPPP) 19
3.2 卡爾曼濾波(Kalman Filter) 20
3.3 建物結構長期位移之速度量估計 22
3.4 半模擬觀測量 24
第四章 研究成果與分析 26
4.1 建物牆上結構長期位移監測 27
4.1.1 測試資料 27
4.1.2 測站NCCU的位移速度量與平均每日解定位標準差分析 28
4.1.3 牆上監測能力分析 31
4.1.4 精度衰減因子分析 36
4.2 建物牆上結構震動位移監測 38
4.2.1 測試資料 38
4.2.2 測站SPSI PPP動態定位成果分析 39
4.2.3 使用半模擬觀測量的定位成果分析 40
4.2.4 牆上監測能力分析 44
4.2.5 使用CPPP改善牆上監測能力 46
第五章 結論與建議 50
參考文獻 51
zh_TW
dc.format.extent 2490577 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0109257030en_US
dc.subject (關鍵詞) 精密單點定位zh_TW
dc.subject (關鍵詞) 建物結構長期位移zh_TW
dc.subject (關鍵詞) 建物結構震動位移zh_TW
dc.subject (關鍵詞) 牆上監測zh_TW
dc.subject (關鍵詞) precise point positioningen_US
dc.subject (關鍵詞) structural long-term displacementen_US
dc.subject (關鍵詞) structural vibration displacementen_US
dc.subject (關鍵詞) GNSS monitoring on the wallen_US
dc.title (題名) 多星系GNSS精密單點定位技術應用於監測建物牆壁上結構位移之能力分析zh_TW
dc.title (題名) Ability Analysis for Monitoring Structural Displacements on The Wall using multi-constellation GNSS Precise Point Positioning Technologyen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 王昱凡、陳國華(2020)。臺灣水平地表變形模式精度分析與應用。國土測繪與空間資訊,8(2),61–77。

廖文正、高健鈞、黃禾程、黃炳勳、蔣啟恆(2021)。以資料庫回歸台灣混凝土潛變預測公式並應用於預力橋梁長期變位分析。結構工程,36(1),93–111。

Carpinteri, A., Lacidogna, G. (2006) Damage monitoring of an historical masonry building by the acoustic emission technique. Materials and Structures 39(2):161-167.

Chu, F.-Y., Yang, M. (2014) GPS/Galileo long baseline computation: method and performance analyses. GPS Solutions 18(2):263-272.

Dat, B. T., Traykov, A., Traykova, M. (2018) Shear-lag effect and its effect on the design of high-rise buildings. In: High-Rise Construction, Samara, Russia, September 4-8.

Deng, C., Tang, W., Liu, J., Shi, C. (2013) Reliable single-epoch ambiguity resolution for short baselines using combined GPS/BeiDou system. GPS Solutions 18(3):375–386.

Eitzenberger A (2008) Train-induced vibrations in tunnels – a review. Lulea University of Technology, Sweden.

Farrar, C. R., Worden, K. (2007) An introduction to structural health monitoring. Philosophical Transactions of the Royal Society A 365(1851):303–315.

Franzius, J. N., Potts, D. M., Addenbrooke, T. I., Burland, J. B. (2004) The influence of building weight on tunnelling-induced ground and building deformation. Soils and Foundations 44(1):25-38.

Gokdemir, H., Ozbasaran, H., Dogan, M., Unluoglu, E., Albayrak, U. (2013) Effects of torsional irregularity to structures during earthquakes. Engineering Failure Analysis 35:713-717.

Goad, C. C. (1974). A modified Hopfield tropospheric refraction correction model. Fall In: Annual Meeting, San Francisco, California, December 10–13.

Guan, Z., Jiang, Y., Tanabashi, Y. (2008) Rheological parameter estimation for the prediction of long-term deformations in conventional tunneling. Tunnelling and Underground Space Technology 24(3):250-259.

Gu, H., Wang, T., Zhu, Y., Wang, C., Yang, D., Huang, L. (2021) A completion method for missing concrete dam deformation monitoring data pieces. Applied Sciences 11(1):463.

Kovacevic, I., Dzidic, S. (2018) Lateral and accidental actions – risk of progressive collapse in high-rise buildings. In: Contemporary achievements in civil engineering, Subotica, Serbia, April 20.

Leick, A., Rapoport, L., Tatarnikov, D. (2015). GPS satellite surveying. John Wiley & Sons, New Jersey.

Li, H.-N., Li, D.-S., Song, G.-B. (2004) Recent applications of fiber optic sensors to health monitoring in civil engineering. Engineering Structures 26(11):1647-1657.

Lovse, J. W., Teskey, W. F., Lachapelle, G., Cannon, M. E. (1995) Dynamic deformation monitoring of tall stucture using GPS technology. Journal of Surveying Engineering 121(1):35-40.

Matsumoto, K., Takanezawa, T., & Ooe, M. (2000). Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: a global model and a regional model around Japan. Journal of Oceanography 56(5):567-581.

Moschas, F., Stiros, S. (2013) Noise characteristics of high-frequency, short-duration GPS records from analysis of identical, collocated instruments. Measurement 46(4):1488-1506.

Niell, A. E. (1996) Global mapping functions for the atmosphere delay at radio wavelengths. Journal of Geophysical Research 101(B2):1978-2012.

Nyquist, H. (1928) Thermal agitation of electric charge in conductors. Physical Review 32(1):110-113

O`Keefe, K. (2001) Availability and reliability advantages of GPS/Galileo integration. In: ION GPS, Salt Lake City, Utah.

Park, H. S., Shon, H. G., Kim, I. S., Park, J. H. (2004) Monitoring of structural behavior of high-rise buildings using GPS. In: CTBUH, Seoul, Korean.

Shen, N., Chen, L., Liu, J., Wang, L., Tao, T., Wu, D., Chen, R. (2019) A review of global navigation satellite system (GNSS)-based dynamic monitoring technologies for structural health monitoring. Remote Sensing 11(9):1001.

Shi, J., Xu, C., Guo, J., Gao Y. (2015) Real-time GPS precise point positioning-based precipitable water vapor estimation for rainfall monitoring and forecasting. (2015) IEEE Transactions on Geoscience and Remote Sensing 53(6): 3452-3459.

Takahashi, S., Kubo, N., Yamaguchi, N., Yokoshima, T. (2018) Real-time monitoring of structure movements using low-cost, wall-mounted, hand-held RTK-GNSS receivers. In: ION GNSS+, Miami, Florida, September 24–28.

Teunissen, P. J. G., Montenbruck, O. (2017) Handbook of global navigation satellite systems. Springer, Switzerland.

Ubertini, F., Cavalagli, N., Kita, A., Comanducci, G. (2018) Assessment of a monumental masonry bell-tower after 2016 Central Italy seismic sequence by long-term SHM. Bulletin of Earthquake Engineering 16(2):775–801.

Wu, J. T., Wu, S. C., Hajj, G. A., Bertiger, W. I., Lichten, S. M. (1993) Effects of antenna orientation on GPS carrier phase. Manuscripta Geodaetia 18(2):91-98.

Xiong, C., Niu, Y. (2018) Investigation of the dynamic behavior of a super high-rise structure using RTK-GNSS technique. KSCE Journal of Civil Engineering 23(2):654-665.

Xu, Guochang. (2007). GPS: Theory, Algorithms and Applications. Springer-Verlag, Berlin.

Yi, T., Li, H., Gu, M. (2010) Full-scale measurements of dynamic response of suspension bridge subjected to environmental loads using GPS technology. Science China Technological Sciences 53(2):469-479.

Yu, J., Yan, B., Meng, X., Shao, X., Ye, H. (2016) Measurement of bridge dynamic responses using network-based real-time kinematic GNSS technique. Journal of Surveying Engineering 142(3):04015013.

Zhang, D., Yu, Z., Xu, Y., Ding, L., Ding, H., Yu, Q., Su, Z. (2022) GNSS aided long-range 3D displacement sensing for high-rise structures with two non-overlapping cameras. Remote Sensing 14(2):379.

Zhang, X., Zhang, Y., Li, B., Qiu, G. (2018) GNSS-Based Verticality Monitoring of Super-Tall Buildings. Applied Sciences 8(6):991.
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU202201323en_US