學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

題名 BCC鉭及單晶鋁〔111〕基共面波導共振腔的表現
The performance of coplanar waveguide resonators made of BCC tantalum and single crystal aluminium〔111〕
作者 黃正丞
Huang, Cheng-Cheng
貢獻者 陳啟東<br>許琇娟
Chen, Chii-Dong<br>Hsu, Hsiu-Chuan
黃正丞
Huang, Cheng-Cheng
關鍵詞 超導
二能級系統
共面波導
Q factor
量子計算
Superconductor
Two level system
Coplanar waveguide
Q factor
Quantum computing
日期 2022
上傳時間 5-Oct-2022 09:31:21 (UTC+8)
摘要 Transmon超導量子電腦晶片零件包含傳輸/讀取線(transmission/readout line)、共振腔(resonance cavity)、約瑟夫森接面(Josephson junction)、並聯電容板(parallel capacitor)及控制線(gate control)。在量子位元的操作上,弛豫時間(relaxation time, T1)是一項重要的參數,這項參數直接的指出了一個量子位元可以進行操作的最長時間,而這項時間長度會受到介電損失的「限制」,介電損失(dielectric loss)是在超導體的臨界溫度下,造成去相干(decoherence)的重要因子之一。
本文研究的介電損失形式為二能級系統(Two level system, TLS),二能級系統主要來源可分為三種:金屬-真空介面(metal-vacuum)、金屬-基板介面(metal-substrate),及基板-真空介面(substrate-vacuum),二能級系統會限制量子位元在弛豫時間的表現;製程及材料皆會對成品的二能級系統損失比例造成影響。本文探討了透過分析共面波導共振腔各種材料組合及製程方法來找出擁有最低的二能級系統損失,提高品質因子。
本實驗挑選技術成熟易加工的單晶鋁,及近期在文獻上弛豫時間上有著優秀的表現的BCC 鉭(α-Ta)進行共面波導共振腔製造,目的在於比較不同材料、製程及界面對共振腔成品表現的影響及各項製程的優缺點。材料部分,以濺鍍鋁長在矽基版上的樣品有著較高的品質因子,且能量相關性也相對穩定;介面部分,我們發現共平面共振腔間隙越寬,共振腔的本質品質因素越高,說明二氧化矽表面的二能級系統可能是主要的能量耗散機制。
The components of transmon superconducting quantum computer chip include transmission/readout line, resonance cavity, Josephson junction, parallel capacitor and gate control line. In the operation of qubits, an important parameter is the relaxation time (T1) of the qubits, which implies the maximum time that a qubit can be operated before it went decoherence, and the length of this time will be affected by the dielectric loss, which is the major factor of the decoherence.
The type of dielectric loss studied in this work is two-level system (TLS), which can located in the metal-vacuum interface, metal-substrate interface, and substrate-vacuum interface. The two-level system might present in the amorphous residuals results from the device manufacturing process.
We studied superconducting coplanar waveguide resonators made of crystalline Al and α-phase Ta combinations and fabrication process methods of coplanar waveguide resonators to figure out the combination with the lowest TLS loss, thereby improving the resonator quality factor.
In this thesis work, we studied single crystal aluminum and BCC tantalum (α-Ta) coplanar waveguide resonators made by e-beam lithography and dry-etching techniques. α-Ta resonators have been reported with an excellent performance on relaxation time recently, and was selected to examine the influence materials and fabrication processes and interfaces. We found that when the cavity photon number is small and the TLS dominates the loss mechanism, the sputtered Al on Si substrate has the highest internal quality factor. Furthermore, we noted that the larger the coplanar waveguide gap width, the higher the internal quality factor, suggesting that the loss is largely contributed by the substrate surface loss.
參考文獻 [1] Stajic, J.M., Coontz, R., & Osborne, I.S. (2011). Happy 100th, Superconductivity! Science, 332, 189-189.
[2] Bardeen, J., Cooper, L. N., & Schrieffer, J. R. (1957). Theory of superconductivity. Physical review, 108(5), 1175.
[3] Krantz, P., Kjaergaard, M., Yan, F., Orlando, T.P., Gustavsson, S., & Oliver, W.D. (2019). A quantum engineer`s guide to superconducting qubits. Applied Physics Reviews.
[4] Place, A., Rodgers, L.V., Mundada, P.S., Smitham, B., Fitzpatrick, M., Leng, Z., Premkumar, A., Bryon, J., Vrajitoarea, A., Sussman, S., Cheng, G., Madhavan, T., Babla, H.K., Le, X.H., Gang, Y., Jäck, B., Gyenis, A., Yao, N., Cava, R.J., de Leon, N.P., & Houck, A.A. (2021). New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nature Communications, 12.
[5] Wang, C., Li, X., Xu, H., Li, Z., Wang, J., Yang, Z., Mi, Z., Liang, X., Su, T., Yang, C., Wang, G., Wang, W., Li, Y., Chen, M., Li, C., Linghu, K., Han, J., Zhang, Y., Feng, Y., Song, Y., Ma, T., Zhang, J., Wang, R., Zhao, P., Liu, W., Xue, G., Jin, Y., & Yu, H. (2022). Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds. npj Quantum Information, 8, 1-6.
[6] Majer, J., Chow, J.M., Gambetta, J.M., Koch, J., Johnson, B.R., Schreier, J.A., Frunzio, L., Schuster, D.I., Houck, A.A., Wallraff, A., Blais, A., Devoret, M.H., Girvin, S.M., & Schoelkopf, R.J. (2007). Coupling superconducting qubits via a cavity bus. Nature, 449, 443-447.
[7] Endo, A., Sfiligoj, C., Yates, S.J., Baselmans, J.J., Thoen, D.J., Javadzadeh, S.M., Werf, P.P., Baryshev, A.M., & Klapwijk, T.M. (2013). On-chip filter bank spectroscopy at 600-700 GHz using NbTiN superconducting resonators. Applied Physics Letters, 103, 032601.
[8] Barends, R., Baselmans, J.J., Hovenier, J.N., Gao, J., Yates, S.J., Klapwijk, T.M., & Hoevers, H.F. (2007). Niobium and Tantalum High Q Resonators for Photon Detectors. IEEE Transactions on Applied Superconductivity, 17, 263-266.
[9] Martinis, J.M., Cooper, K.B., McDermott, R., Steffen, M., Ansmann, M., Osborn, K.D., Cicak, K., Oh, S., Pappas, D.P., Simmonds, R.W., & Yu, C.C. (2005). Decoherence in Josephson qubits from dielectric loss. Physical Review Letters, 95 21, 210503 .
[10] Cochran, J.F., & Mapother, D.E. (1956). SUPERCONDUCTING TRANSITION IN ALUMINUM. Physical Review, 111, 132-142.
[11] Milne, J.G. (1961). Superconducting Transition Temperature of High-Purity Tantalum Metal. Physical Review, 122, 387-388.
[12] Gordon, L., Abu-Farsakh, H., Janotti, A., & Van de Walle, C.G. (2014). Hydrogen bonds in Al2O3 as dissipative two-level systems in superconducting qubits. Scientific Reports, 4.
[13] Goppl, M., Fragner, A., Baur, M., Bianchetti, R., Filipp, S., Fink, J.M., Leek, P.J., Puebla, G., Steffen, L., & Wallraff, A. (2008). Coplanar waveguide resonators for circuit quantum electrodynamics. Journal of Applied Physics, 104, 113904.
[14] Probst, S., Song, F.B., Bushev, P.A., Ustinov, A.V., & Weides, M.P. (2015). Efficient and robust analysis of complex scattering data under noise in microwave resonators. The Review of scientific instruments, 86 2, 024706 .
[15] Burnett, J.J., Bengtsson, A., Niepce, D., & Bylander, J. (2018). Noise and loss of superconducting aluminium resonators at single photon energies. Journal of Physics: Conference Series, 969.
[16] Altoé, M.V., Banerjee, A., Berk, C., Hajr, A., Schwartzberg, A.M., Song, C.Y., Alghadeer, M., Aloni, S., Elowson, M.J., Kreikebaum, J.M., Wong, E.K., Griffin, S.M., Rao, S., Weber-Bargioni, A., Minor, A.M., Santiago, D.I., Cabrini, S., Siddiqi, I., & Ogletree, D.F. (2022). Localization and Mitigation of Loss in Niobium Superconducting Circuits. PRX Quantum.
描述 碩士
國立政治大學
應用物理研究所
109755005
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0109755005
資料類型 thesis
dc.contributor.advisor 陳啟東<br>許琇娟zh_TW
dc.contributor.advisor Chen, Chii-Dong<br>Hsu, Hsiu-Chuanen_US
dc.contributor.author (Authors) 黃正丞zh_TW
dc.contributor.author (Authors) Huang, Cheng-Chengen_US
dc.creator (作者) 黃正丞zh_TW
dc.creator (作者) Huang, Cheng-Chengen_US
dc.date (日期) 2022en_US
dc.date.accessioned 5-Oct-2022 09:31:21 (UTC+8)-
dc.date.available 5-Oct-2022 09:31:21 (UTC+8)-
dc.date.issued (上傳時間) 5-Oct-2022 09:31:21 (UTC+8)-
dc.identifier (Other Identifiers) G0109755005en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/142190-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用物理研究所zh_TW
dc.description (描述) 109755005zh_TW
dc.description.abstract (摘要) Transmon超導量子電腦晶片零件包含傳輸/讀取線(transmission/readout line)、共振腔(resonance cavity)、約瑟夫森接面(Josephson junction)、並聯電容板(parallel capacitor)及控制線(gate control)。在量子位元的操作上,弛豫時間(relaxation time, T1)是一項重要的參數,這項參數直接的指出了一個量子位元可以進行操作的最長時間,而這項時間長度會受到介電損失的「限制」,介電損失(dielectric loss)是在超導體的臨界溫度下,造成去相干(decoherence)的重要因子之一。
本文研究的介電損失形式為二能級系統(Two level system, TLS),二能級系統主要來源可分為三種:金屬-真空介面(metal-vacuum)、金屬-基板介面(metal-substrate),及基板-真空介面(substrate-vacuum),二能級系統會限制量子位元在弛豫時間的表現;製程及材料皆會對成品的二能級系統損失比例造成影響。本文探討了透過分析共面波導共振腔各種材料組合及製程方法來找出擁有最低的二能級系統損失,提高品質因子。
本實驗挑選技術成熟易加工的單晶鋁,及近期在文獻上弛豫時間上有著優秀的表現的BCC 鉭(α-Ta)進行共面波導共振腔製造,目的在於比較不同材料、製程及界面對共振腔成品表現的影響及各項製程的優缺點。材料部分,以濺鍍鋁長在矽基版上的樣品有著較高的品質因子,且能量相關性也相對穩定;介面部分,我們發現共平面共振腔間隙越寬,共振腔的本質品質因素越高,說明二氧化矽表面的二能級系統可能是主要的能量耗散機制。
zh_TW
dc.description.abstract (摘要) The components of transmon superconducting quantum computer chip include transmission/readout line, resonance cavity, Josephson junction, parallel capacitor and gate control line. In the operation of qubits, an important parameter is the relaxation time (T1) of the qubits, which implies the maximum time that a qubit can be operated before it went decoherence, and the length of this time will be affected by the dielectric loss, which is the major factor of the decoherence.
The type of dielectric loss studied in this work is two-level system (TLS), which can located in the metal-vacuum interface, metal-substrate interface, and substrate-vacuum interface. The two-level system might present in the amorphous residuals results from the device manufacturing process.
We studied superconducting coplanar waveguide resonators made of crystalline Al and α-phase Ta combinations and fabrication process methods of coplanar waveguide resonators to figure out the combination with the lowest TLS loss, thereby improving the resonator quality factor.
In this thesis work, we studied single crystal aluminum and BCC tantalum (α-Ta) coplanar waveguide resonators made by e-beam lithography and dry-etching techniques. α-Ta resonators have been reported with an excellent performance on relaxation time recently, and was selected to examine the influence materials and fabrication processes and interfaces. We found that when the cavity photon number is small and the TLS dominates the loss mechanism, the sputtered Al on Si substrate has the highest internal quality factor. Furthermore, we noted that the larger the coplanar waveguide gap width, the higher the internal quality factor, suggesting that the loss is largely contributed by the substrate surface loss.
en_US
dc.description.tableofcontents 謝 辭 I
摘 要 II
Abstract III
目 次 V
表 次 VII
圖 次 VIII
第一章 前言 1
第一節 研究動機 1
第二節 緒論 2
第二章 實驗理論背景 3
第一節 超導量子裝置 3
1. 超導量子裝置元件 3
第二節 共面波導共振腔 4
1. 共面波導共振腔 4
2. 共面波導共振腔基本特性 4
3. 品質因子(Q factor) 5
第三節 介電損失 7
1. 去相干(Decoherence) 7
2. 二能級系統(Two level system, TLS) 7
第三章 材料及製程介紹 8
第一節 樣品材料 9
1. 金屬 9
2. 基板 10
3. 蝕刻選擇 10
第二節 樣品製程 11
1. 濺鍍鋁試片製造過程 11
2. 單晶鋁試片製造過程 12
3. 乾蝕刻BCC鉭(α-Ta)試片製造過程 14
第四章 測量目標及實驗方法 16
第一節 儀器配置 16
1. 樣品載台 16
2. 向量網路分析儀(Vector Network Analyzers, VNA)及RF元件 18
第二節 量測目標 20
第三節 數據擬合 20
1. 品質因子(Qi值) 20
2. 共振腔內光子數(n) 21
3. 二能級系統損失(δTLS) 21
第五章 數據與討論 23
第一節 線寬 23
1. MBE Al 23
2. Sputter Al 24
3. Ta 25
4. 二能級系統損失(δTLS) 26
第二節 能量相關性(Power dependent) 27
1. MBE Al 27
2. Sputter Al 28
3. Ta 29
第六章 結論 30
參考文獻 32
zh_TW
dc.format.extent 2839608 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0109755005en_US
dc.subject (關鍵詞) 超導zh_TW
dc.subject (關鍵詞) 二能級系統zh_TW
dc.subject (關鍵詞) 共面波導zh_TW
dc.subject (關鍵詞) Q factorzh_TW
dc.subject (關鍵詞) 量子計算zh_TW
dc.subject (關鍵詞) Superconductoren_US
dc.subject (關鍵詞) Two level systemen_US
dc.subject (關鍵詞) Coplanar waveguideen_US
dc.subject (關鍵詞) Q factoren_US
dc.subject (關鍵詞) Quantum computingen_US
dc.title (題名) BCC鉭及單晶鋁〔111〕基共面波導共振腔的表現zh_TW
dc.title (題名) The performance of coplanar waveguide resonators made of BCC tantalum and single crystal aluminium〔111〕en_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] Stajic, J.M., Coontz, R., & Osborne, I.S. (2011). Happy 100th, Superconductivity! Science, 332, 189-189.
[2] Bardeen, J., Cooper, L. N., & Schrieffer, J. R. (1957). Theory of superconductivity. Physical review, 108(5), 1175.
[3] Krantz, P., Kjaergaard, M., Yan, F., Orlando, T.P., Gustavsson, S., & Oliver, W.D. (2019). A quantum engineer`s guide to superconducting qubits. Applied Physics Reviews.
[4] Place, A., Rodgers, L.V., Mundada, P.S., Smitham, B., Fitzpatrick, M., Leng, Z., Premkumar, A., Bryon, J., Vrajitoarea, A., Sussman, S., Cheng, G., Madhavan, T., Babla, H.K., Le, X.H., Gang, Y., Jäck, B., Gyenis, A., Yao, N., Cava, R.J., de Leon, N.P., & Houck, A.A. (2021). New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nature Communications, 12.
[5] Wang, C., Li, X., Xu, H., Li, Z., Wang, J., Yang, Z., Mi, Z., Liang, X., Su, T., Yang, C., Wang, G., Wang, W., Li, Y., Chen, M., Li, C., Linghu, K., Han, J., Zhang, Y., Feng, Y., Song, Y., Ma, T., Zhang, J., Wang, R., Zhao, P., Liu, W., Xue, G., Jin, Y., & Yu, H. (2022). Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds. npj Quantum Information, 8, 1-6.
[6] Majer, J., Chow, J.M., Gambetta, J.M., Koch, J., Johnson, B.R., Schreier, J.A., Frunzio, L., Schuster, D.I., Houck, A.A., Wallraff, A., Blais, A., Devoret, M.H., Girvin, S.M., & Schoelkopf, R.J. (2007). Coupling superconducting qubits via a cavity bus. Nature, 449, 443-447.
[7] Endo, A., Sfiligoj, C., Yates, S.J., Baselmans, J.J., Thoen, D.J., Javadzadeh, S.M., Werf, P.P., Baryshev, A.M., & Klapwijk, T.M. (2013). On-chip filter bank spectroscopy at 600-700 GHz using NbTiN superconducting resonators. Applied Physics Letters, 103, 032601.
[8] Barends, R., Baselmans, J.J., Hovenier, J.N., Gao, J., Yates, S.J., Klapwijk, T.M., & Hoevers, H.F. (2007). Niobium and Tantalum High Q Resonators for Photon Detectors. IEEE Transactions on Applied Superconductivity, 17, 263-266.
[9] Martinis, J.M., Cooper, K.B., McDermott, R., Steffen, M., Ansmann, M., Osborn, K.D., Cicak, K., Oh, S., Pappas, D.P., Simmonds, R.W., & Yu, C.C. (2005). Decoherence in Josephson qubits from dielectric loss. Physical Review Letters, 95 21, 210503 .
[10] Cochran, J.F., & Mapother, D.E. (1956). SUPERCONDUCTING TRANSITION IN ALUMINUM. Physical Review, 111, 132-142.
[11] Milne, J.G. (1961). Superconducting Transition Temperature of High-Purity Tantalum Metal. Physical Review, 122, 387-388.
[12] Gordon, L., Abu-Farsakh, H., Janotti, A., & Van de Walle, C.G. (2014). Hydrogen bonds in Al2O3 as dissipative two-level systems in superconducting qubits. Scientific Reports, 4.
[13] Goppl, M., Fragner, A., Baur, M., Bianchetti, R., Filipp, S., Fink, J.M., Leek, P.J., Puebla, G., Steffen, L., & Wallraff, A. (2008). Coplanar waveguide resonators for circuit quantum electrodynamics. Journal of Applied Physics, 104, 113904.
[14] Probst, S., Song, F.B., Bushev, P.A., Ustinov, A.V., & Weides, M.P. (2015). Efficient and robust analysis of complex scattering data under noise in microwave resonators. The Review of scientific instruments, 86 2, 024706 .
[15] Burnett, J.J., Bengtsson, A., Niepce, D., & Bylander, J. (2018). Noise and loss of superconducting aluminium resonators at single photon energies. Journal of Physics: Conference Series, 969.
[16] Altoé, M.V., Banerjee, A., Berk, C., Hajr, A., Schwartzberg, A.M., Song, C.Y., Alghadeer, M., Aloni, S., Elowson, M.J., Kreikebaum, J.M., Wong, E.K., Griffin, S.M., Rao, S., Weber-Bargioni, A., Minor, A.M., Santiago, D.I., Cabrini, S., Siddiqi, I., & Ogletree, D.F. (2022). Localization and Mitigation of Loss in Niobium Superconducting Circuits. PRX Quantum.
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU202201566en_US