學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

  • No doi shows Citation Infomation
題名 智慧微電網營運模式關鍵因素權重評比之研究
Study of Weighting Assessment on Key Factors of Smart Microgrid Operating Model
作者 黃哲崗
Huang, Che-Gang
貢獻者 許志義<br>吳學良
Hsu, Jyh-Yih<br>Wu, Shiue-Liang
黃哲崗
Huang, Che-Gang
關鍵詞 微電網
層級分析法
營運模式
關鍵因素
智慧電網
再生能源
Microgrid
Analytic Hierarchy Process
Operational Model
Key Factors
Smart Grid
Renewable Energy
日期 2023
上傳時間 2-Aug-2023 13:43:35 (UTC+8)
摘要 氣候變遷對地球環境的危害日益嚴重,各國政府皆須積極推行減碳措施,而能源轉型便是其中的發展重點。然而,再生能源發電具有間歇性的特點,無法配合電力需求進行調度,隨其發電佔比上升,將影響區域電網的穩定性。據此,台灣現階段需要效仿先進國家,積極布建智慧微電網系統,並推動相應的營運模式。微電網對整體能源供應有諸多助益,不僅可提升能源系統的彈性與韌性、保障區域供電、增進能源利用率並降低碳排,還能透過電力交易,使參與者能自主售電,創造經濟效益。
本研究以層級分析法為基礎,透過檢閱過往文獻,統整出影響智慧微電網營運模式之關鍵因素,並以經濟面、技術面、社會面、環境面為主要指標,建立層級分析架構。再循此架構擬定出專家問卷,分別對專家學者、台電主管、與民營主管三個群組進行調查,並分析問卷之調查結果,求出各個關鍵因素的權重,再依其重要性做出排序。
研究結果顯示,整體而言,「經濟面」與「技術面」是較重要的考量指標。第二層級的部分,整體群組則認為「營運效益」(0.1667)、「計畫總成本」(0.1511)、與「關鍵技術成熟度」(0.1411)是較重要的準則。第三層級的因子,權重值依序為「建置成本」(0.0847)、「故障時間佔運行時間比例」(0.0724)、「系統服務故障之恢復時間」(0.0674)、「再生能源比重」(0.0673)、與「維運成本」(0.0664),換言之,此五項因子在智慧微電網的營運模式中,具相對重要性。最後,本研究將與國外相關研究之實證結果進行比較,探討關鍵因素之排序差異。
The damage caused by climate change to the global environment is becoming increasingly severe. Therefore, governments worldwide must take active steps to implement carbon reduction measures, with a focus on energy transformation as a development priority. However, renewable energy generation has intermittent characteristics and cannot be scheduled reliably to meet electricity demand. As its share of electricity generation increases, it will impact the stability of regional power grids.

Accordingly, Taiwan should follow the example of advanced countries, actively build smart microgrid systems while promoting corresponding operating models. Microgrids have many benefits to the overall energy supply, not only enhance the flexibility and resilience of the energy system, ensure regional power supply, increase energy utilization efficiency, and reduce carbon emissions, but they can also enable participants to sell electricity independently and create economic benefits through power trading.

Based on the Analytic Hierarchy Process, this study reviews relevant literature to integrate key factors affecting the operation mode of smart microgrids, and establishes a hierarchical analysis framework with economic, technical, social, and environmental indicators as the primary criteria. Then, expert questionnaires are formulated according to this framework, and surveys are conducted on three groups of experts and scholars, Taiwan Power Company executives, and private sector executives, respectively. The survey results are analyzed to determine the weight values of each key factor and to rank them according to their level of importance.

The research results show that, overall, "economic" and "technical" aspects are more important considerations. In the second level, the overall group considers "operational efficiency" (0.1667), "total project cost" (0.1511), and "maturity of key technologies" (0.1411) to be more important criteria. In the third level, the weight values are ordered by "construction cost" (0.0847), "proportion of downtime to operating time" (0.0724), "recovery time for system service failures" (0.0674), "proportion of renewable energy" (0.0673), and "maintenance cost" (0.0664). In other words, these five factors are relatively significant for the operational mode of a smart microgrid. Finally, this study will compare the empirical results with relevant studies conducted abroad to explore the differences in the ranking of key factors.
參考文獻 一、中文文獻
(一)期刊論文
1.吳泊綝 (2016),金融科技關鍵因素權重評比之研究。國立政治大學經濟學系碩士論文。
2.沈萌、張干、張可愛 (2022),「園區級區域綜合能源系統綜合評價方法及應用」。北京理工大學學報,第24卷,第4期,頁51-65。
3.林俊儒 (2014),智慧電表用戶選用需求面管理方案關鍵因素之權重分析。國立中興大學資訊管理學系碩士論文。
4.林曉琪 、韓佳佑 、姜政綸 、郭春河 、張永瑞 (2019),微電網的應用效益及其配套措施之分析。核能研究所。
5.張永瑞、姜政綸、李奕德 (2015),「微電網發展前景及技術剖析」。臺灣能源期刊,第2卷 第3期,頁259-278。
6.張世翔、呂帥康 (2018),「面向園區微電網的綜合能源系統評價方法」。《電網技術》,第8期,頁2431-2438。
7.鄧振源、曾國雄 (1989a),「層級分析法(AHP)的內涵特性與應用(上)」。中國統計學報,第27卷,第6期,頁13707-13724。
8.鄧振源、曾國雄 (1989b),「層級分析法(AHP)的內涵特性與應用(下)」。中國統計學報,第27卷,第7期,頁13767-13870。
(二)政府機構計畫報告
1.台灣電力公司 (2022)。強化電網韌性建設計畫。
2.行政院原子能委員會核能研究所 (2015)。104年度委託研究計畫研究報告-
台灣發展智慧電網之技術經濟分析與3E效益評估。
3.行政院 (2020)。智慧電網總體規劃方案核定本。
4.國科會、彰師大 (2021)。「多重微電網高佔比太陽光電環境之實際場域研究與展示」研發計畫。
5.經濟部能源局 (2022)。前瞻基礎建設計畫-淨零計畫-區域電網儲能計畫。
二、英文文獻
(一)期刊論文
1.A. Ashok Kumar, N. Amutha Prabha (2022). A comprehensive review of DC microgrid in market segments and control technique. Heliyon, Volume 8, Issue 11, November 2022, e11694.
2.Bohra, Shabbir S. ; Anvari-Moghaddam, Amjad; Mohammadi-Ivatloo, Behnam (2019). AHP-Assisted Multi-Criteria Decision-Making Model for Planning of Microgrids. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society.
3.Chunyang Liu (2019). A Review of Microgrid Development and Technology. IOP Conference Series: Earth and Environmental Science, Sci. 300 042048.
4.Guopeng Zhao and Dong Wang (2019). Comprehensive Evaluation of AC/DC Hybrid Microgrid Planning Based on Analytic Hierarchy Process and Entropy Weight Method. Applied Sciences, 2019, 9, 3843.
5.Hamed Taherdoost, and Mitra Madanchian (2023). Multi-Criteria Decision Making (MCDM) Methods and Concepts. Encyclopedia 2023, 3, pp. 77–87.
6.Luis G. Vargas and J. Bernat Roura-Agusti. (1989). Business Strategy Formulation for a Financial Institution in a Developing Country. The Analytic Hierarchy Process, pp 251–265.
7.Maysam Abbasi, Ehsan Abbasi, Li Li, Ricardo P. Aguilera, Dylan Lu, and Fei Wang (2023). Review on the Microgrid Concept, Structures, Components, Communication Systems, and Control Methods. Energies 2023, 16, 484.
8.Saaty, T. L. (1980). The Analytic Hierarchy Process. New Cork.
9.Sheetal Chandak and Pravat Kumar Rout (2020). The implementation framework of a microgrid: A review. International Journal of Energy Research 2020; 1–25.
10.Shuangchen Yuan, Zhijia Wu, and Long Yan (2021). A Comprehensive Evaluation Model for Microgrid with CCHP. Journal of Physics: Conference Series.
11.Taskin Jamal, Tania Urmee, GM Shafiullah, and Farhad Shahnia (2018) Using Experts’ Opinions and Multi-Criteria Decision Analysis to Determine the Weighing of Criteria Employed in Planning Remote Area Microgrids. ICUE 2018 on Green Energy for Sustainable Development.
12.Ying Ma, Yichang Li, Shunzhi Zhu, Nan Qin, Guang Zhao, and Chao Huang (2018) Fuzzy AHP-based Comprehensive Evaluation for Smart Grid in Energy Internet System. International Journal of Performability Engineering, vol. 14, no. 8, August 2018, pp. 1705-1711.
13.Yoon, K., and Hwang, C. L. (1985). Manufacturing plant location analysis by multiple attribute decision making: Part II. Multi-plant strategy and plant relocation. International Journal of Production Research, 23(2), 361-370.
(二)國外機構報告
1.International Energy Agency (2021). Net Zero by 2050 - A Roadmap for the Global Energy Sector. Flagship report, May 2021.
2.International Renewable Energy Agency (2019). Innovation landscape brief: Behind-the-meter batteries, International Renewable Energy Agency, Abu Dhabi.
3.Microgrid Market Size & Share Analysis - Growth Trends & Forecasts (2023). Mordor Intelligence Pvt Ltd.
三、網路資源
1.Ethan Howland (2021年6月25日). Chick-fil-A Restaurants to Install Test Microgrids ahead of Possible National Rollout. MICROGRID KNOWLEDGE.
https://www.microgridknowledge.com/google-news-feed/article/11427920/chick-fil-a-restaurants-to-install-test-microgrids-ahead-of-possible-national-rollout
2.Greenpeace 綠色和平 (2021年11月19日)。聯合國氣候大會落幕,結果如何?減碳協議是成功還是失敗?
https://reurl.cc/M8vZAX
3.Mark Wilson (2021年2月10日)。Microgrids: A critical key to the energy transition. Stantec.
https://www.stantec.com/en/ideas/microgrids-a-critical-key-to-the-energy-transition
4.王靖 (2020),「增強電網韌性,應對極端天氣」。展望行業觀察,頁66-71。
https://www.accenture.com/_acnmedia/PDF-109/Accenture-Enhance-Power-Grid-Resilience.pdf
5.台電月刊 (2017年2月1日),微電網見曙光 有利再生能源大布局。650期。
https://tpcjournal.taipower.com.tw/article/1916
6.台電月刊 (2018年12月19日),Small Is New Big 以小見大的電網未來。672期。
https://tpcjournal.taipower.com.tw/article/2887
7.台電月刊 (2022年11月17日),十年投5,645億 為臺灣電網把脈 訂定強韌計畫。719期。
https://tpcjournal.taipower.com.tw/article/5772
8.周桂蘭 (2020年6月22日),美國加州公共事業委員會發佈促進微電網發展和互聯互通的命令,以擴大微電網的市場滲透並加强電力服務的可靠性和彈性。能源知識庫。
https://km.twenergy.org.tw/Data/db_more?id=3784
9.洪穎怡 (2019年8月30日),微電網簡介。TEPA台灣電力企業聯合會電子報,第十二期。
http://www.tepa108.org.tw/EpaperHtm/20190830175248.htm
10.胡毅、王逢偉 (2020年11月7日),儲能技術與微電網的重要發展。能源教育資源總中心,專家專欄。
https://learnenergy.tw/index.php?inter=knowledge&caid=4&id=558
11.陳芃暉 (2022),智慧微電網的佈建與優勢。中鼎集團電子報,No. 473。
https://www.ctci.com/e-newsletter/CH/473/technology/article-01.html
12.張永瑞 (2019年11月29日),智慧微電網技術研發現況。
https://speakerdeck.com/learnenergy/zhi-hui-wei-dian-wang-ji-shu-yan-fa-xian-kuang-zhang-yong-rui-zu-chang
13.許志義 (2022年12月22日),能源雙軸轉型策略。中華大學。
https://youtu.be/JO7SYryLui8
14.劉庭莉 (2022年4月11日),七原鄉可自主供電72小時 台電屏東防災型微電網啟用。環境資訊中心。
https://e-info.org.tw/node/233823
15.劉嫈楓 (2023年2月24日),氣候變遷因應法上路!淨零目標入法、徵收碳費、設置溫管基金 修法重點一次看。聯合新聞網。
https://ubrand.udn.com/ubrand/story/12117/6989827
描述 碩士
國立政治大學
經濟學系
110258039
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0110258039
資料類型 thesis
dc.contributor.advisor 許志義<br>吳學良zh_TW
dc.contributor.advisor Hsu, Jyh-Yih<br>Wu, Shiue-Liangen_US
dc.contributor.author (Authors) 黃哲崗zh_TW
dc.contributor.author (Authors) Huang, Che-Gangen_US
dc.creator (作者) 黃哲崗zh_TW
dc.creator (作者) Huang, Che-Gangen_US
dc.date (日期) 2023en_US
dc.date.accessioned 2-Aug-2023 13:43:35 (UTC+8)-
dc.date.available 2-Aug-2023 13:43:35 (UTC+8)-
dc.date.issued (上傳時間) 2-Aug-2023 13:43:35 (UTC+8)-
dc.identifier (Other Identifiers) G0110258039en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/146481-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 經濟學系zh_TW
dc.description (描述) 110258039zh_TW
dc.description.abstract (摘要) 氣候變遷對地球環境的危害日益嚴重,各國政府皆須積極推行減碳措施,而能源轉型便是其中的發展重點。然而,再生能源發電具有間歇性的特點,無法配合電力需求進行調度,隨其發電佔比上升,將影響區域電網的穩定性。據此,台灣現階段需要效仿先進國家,積極布建智慧微電網系統,並推動相應的營運模式。微電網對整體能源供應有諸多助益,不僅可提升能源系統的彈性與韌性、保障區域供電、增進能源利用率並降低碳排,還能透過電力交易,使參與者能自主售電,創造經濟效益。
本研究以層級分析法為基礎,透過檢閱過往文獻,統整出影響智慧微電網營運模式之關鍵因素,並以經濟面、技術面、社會面、環境面為主要指標,建立層級分析架構。再循此架構擬定出專家問卷,分別對專家學者、台電主管、與民營主管三個群組進行調查,並分析問卷之調查結果,求出各個關鍵因素的權重,再依其重要性做出排序。
研究結果顯示,整體而言,「經濟面」與「技術面」是較重要的考量指標。第二層級的部分,整體群組則認為「營運效益」(0.1667)、「計畫總成本」(0.1511)、與「關鍵技術成熟度」(0.1411)是較重要的準則。第三層級的因子,權重值依序為「建置成本」(0.0847)、「故障時間佔運行時間比例」(0.0724)、「系統服務故障之恢復時間」(0.0674)、「再生能源比重」(0.0673)、與「維運成本」(0.0664),換言之,此五項因子在智慧微電網的營運模式中,具相對重要性。最後,本研究將與國外相關研究之實證結果進行比較,探討關鍵因素之排序差異。
zh_TW
dc.description.abstract (摘要) The damage caused by climate change to the global environment is becoming increasingly severe. Therefore, governments worldwide must take active steps to implement carbon reduction measures, with a focus on energy transformation as a development priority. However, renewable energy generation has intermittent characteristics and cannot be scheduled reliably to meet electricity demand. As its share of electricity generation increases, it will impact the stability of regional power grids.

Accordingly, Taiwan should follow the example of advanced countries, actively build smart microgrid systems while promoting corresponding operating models. Microgrids have many benefits to the overall energy supply, not only enhance the flexibility and resilience of the energy system, ensure regional power supply, increase energy utilization efficiency, and reduce carbon emissions, but they can also enable participants to sell electricity independently and create economic benefits through power trading.

Based on the Analytic Hierarchy Process, this study reviews relevant literature to integrate key factors affecting the operation mode of smart microgrids, and establishes a hierarchical analysis framework with economic, technical, social, and environmental indicators as the primary criteria. Then, expert questionnaires are formulated according to this framework, and surveys are conducted on three groups of experts and scholars, Taiwan Power Company executives, and private sector executives, respectively. The survey results are analyzed to determine the weight values of each key factor and to rank them according to their level of importance.

The research results show that, overall, "economic" and "technical" aspects are more important considerations. In the second level, the overall group considers "operational efficiency" (0.1667), "total project cost" (0.1511), and "maturity of key technologies" (0.1411) to be more important criteria. In the third level, the weight values are ordered by "construction cost" (0.0847), "proportion of downtime to operating time" (0.0724), "recovery time for system service failures" (0.0674), "proportion of renewable energy" (0.0673), and "maintenance cost" (0.0664). In other words, these five factors are relatively significant for the operational mode of a smart microgrid. Finally, this study will compare the empirical results with relevant studies conducted abroad to explore the differences in the ranking of key factors.
en_US
dc.description.tableofcontents 誌謝 I
摘要 II
Abstract III
目次 IV
表次 VI
圖次 VIII
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 2
第三節 研究流程 3
第四節 研究架構與章節安排 4
第二章 文獻探討 5
第一節 智慧微電網發展趨勢 5
第二節 微電網與多準則決策方法相關文獻 8
第三節 層級分析法 12
第四節 本章小結 16
第三章 研究方法 17
第一節 研究架構 17
第二節 研究變數與定義 17
第三節 問卷發放對象與調查結果 22
第四章 實證結果與分析 23
第一節 「智慧微電網營運模式」之第一層指標權重分析 23
第二節 「智慧微電網營運模式」之第二層準則權重分析 24
第三節 「智慧微電網營運模式」之第三層因子權重分析 28
第四節 整體層級關鍵因素權重分析 35
第五節 與國外四篇文獻之實證結果比較 38
第五章 結論與建議 40
第一節 研究結論 40
第二節 研究貢獻 41
第三節 研究建議 42
參考文獻 44
zh_TW
dc.format.extent 2244246 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0110258039en_US
dc.subject (關鍵詞) 微電網zh_TW
dc.subject (關鍵詞) 層級分析法zh_TW
dc.subject (關鍵詞) 營運模式zh_TW
dc.subject (關鍵詞) 關鍵因素zh_TW
dc.subject (關鍵詞) 智慧電網zh_TW
dc.subject (關鍵詞) 再生能源zh_TW
dc.subject (關鍵詞) Microgriden_US
dc.subject (關鍵詞) Analytic Hierarchy Processen_US
dc.subject (關鍵詞) Operational Modelen_US
dc.subject (關鍵詞) Key Factorsen_US
dc.subject (關鍵詞) Smart Griden_US
dc.subject (關鍵詞) Renewable Energyen_US
dc.title (題名) 智慧微電網營運模式關鍵因素權重評比之研究zh_TW
dc.title (題名) Study of Weighting Assessment on Key Factors of Smart Microgrid Operating Modelen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 一、中文文獻
(一)期刊論文
1.吳泊綝 (2016),金融科技關鍵因素權重評比之研究。國立政治大學經濟學系碩士論文。
2.沈萌、張干、張可愛 (2022),「園區級區域綜合能源系統綜合評價方法及應用」。北京理工大學學報,第24卷,第4期,頁51-65。
3.林俊儒 (2014),智慧電表用戶選用需求面管理方案關鍵因素之權重分析。國立中興大學資訊管理學系碩士論文。
4.林曉琪 、韓佳佑 、姜政綸 、郭春河 、張永瑞 (2019),微電網的應用效益及其配套措施之分析。核能研究所。
5.張永瑞、姜政綸、李奕德 (2015),「微電網發展前景及技術剖析」。臺灣能源期刊,第2卷 第3期,頁259-278。
6.張世翔、呂帥康 (2018),「面向園區微電網的綜合能源系統評價方法」。《電網技術》,第8期,頁2431-2438。
7.鄧振源、曾國雄 (1989a),「層級分析法(AHP)的內涵特性與應用(上)」。中國統計學報,第27卷,第6期,頁13707-13724。
8.鄧振源、曾國雄 (1989b),「層級分析法(AHP)的內涵特性與應用(下)」。中國統計學報,第27卷,第7期,頁13767-13870。
(二)政府機構計畫報告
1.台灣電力公司 (2022)。強化電網韌性建設計畫。
2.行政院原子能委員會核能研究所 (2015)。104年度委託研究計畫研究報告-
台灣發展智慧電網之技術經濟分析與3E效益評估。
3.行政院 (2020)。智慧電網總體規劃方案核定本。
4.國科會、彰師大 (2021)。「多重微電網高佔比太陽光電環境之實際場域研究與展示」研發計畫。
5.經濟部能源局 (2022)。前瞻基礎建設計畫-淨零計畫-區域電網儲能計畫。
二、英文文獻
(一)期刊論文
1.A. Ashok Kumar, N. Amutha Prabha (2022). A comprehensive review of DC microgrid in market segments and control technique. Heliyon, Volume 8, Issue 11, November 2022, e11694.
2.Bohra, Shabbir S. ; Anvari-Moghaddam, Amjad; Mohammadi-Ivatloo, Behnam (2019). AHP-Assisted Multi-Criteria Decision-Making Model for Planning of Microgrids. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society.
3.Chunyang Liu (2019). A Review of Microgrid Development and Technology. IOP Conference Series: Earth and Environmental Science, Sci. 300 042048.
4.Guopeng Zhao and Dong Wang (2019). Comprehensive Evaluation of AC/DC Hybrid Microgrid Planning Based on Analytic Hierarchy Process and Entropy Weight Method. Applied Sciences, 2019, 9, 3843.
5.Hamed Taherdoost, and Mitra Madanchian (2023). Multi-Criteria Decision Making (MCDM) Methods and Concepts. Encyclopedia 2023, 3, pp. 77–87.
6.Luis G. Vargas and J. Bernat Roura-Agusti. (1989). Business Strategy Formulation for a Financial Institution in a Developing Country. The Analytic Hierarchy Process, pp 251–265.
7.Maysam Abbasi, Ehsan Abbasi, Li Li, Ricardo P. Aguilera, Dylan Lu, and Fei Wang (2023). Review on the Microgrid Concept, Structures, Components, Communication Systems, and Control Methods. Energies 2023, 16, 484.
8.Saaty, T. L. (1980). The Analytic Hierarchy Process. New Cork.
9.Sheetal Chandak and Pravat Kumar Rout (2020). The implementation framework of a microgrid: A review. International Journal of Energy Research 2020; 1–25.
10.Shuangchen Yuan, Zhijia Wu, and Long Yan (2021). A Comprehensive Evaluation Model for Microgrid with CCHP. Journal of Physics: Conference Series.
11.Taskin Jamal, Tania Urmee, GM Shafiullah, and Farhad Shahnia (2018) Using Experts’ Opinions and Multi-Criteria Decision Analysis to Determine the Weighing of Criteria Employed in Planning Remote Area Microgrids. ICUE 2018 on Green Energy for Sustainable Development.
12.Ying Ma, Yichang Li, Shunzhi Zhu, Nan Qin, Guang Zhao, and Chao Huang (2018) Fuzzy AHP-based Comprehensive Evaluation for Smart Grid in Energy Internet System. International Journal of Performability Engineering, vol. 14, no. 8, August 2018, pp. 1705-1711.
13.Yoon, K., and Hwang, C. L. (1985). Manufacturing plant location analysis by multiple attribute decision making: Part II. Multi-plant strategy and plant relocation. International Journal of Production Research, 23(2), 361-370.
(二)國外機構報告
1.International Energy Agency (2021). Net Zero by 2050 - A Roadmap for the Global Energy Sector. Flagship report, May 2021.
2.International Renewable Energy Agency (2019). Innovation landscape brief: Behind-the-meter batteries, International Renewable Energy Agency, Abu Dhabi.
3.Microgrid Market Size & Share Analysis - Growth Trends & Forecasts (2023). Mordor Intelligence Pvt Ltd.
三、網路資源
1.Ethan Howland (2021年6月25日). Chick-fil-A Restaurants to Install Test Microgrids ahead of Possible National Rollout. MICROGRID KNOWLEDGE.
https://www.microgridknowledge.com/google-news-feed/article/11427920/chick-fil-a-restaurants-to-install-test-microgrids-ahead-of-possible-national-rollout
2.Greenpeace 綠色和平 (2021年11月19日)。聯合國氣候大會落幕,結果如何?減碳協議是成功還是失敗?
https://reurl.cc/M8vZAX
3.Mark Wilson (2021年2月10日)。Microgrids: A critical key to the energy transition. Stantec.
https://www.stantec.com/en/ideas/microgrids-a-critical-key-to-the-energy-transition
4.王靖 (2020),「增強電網韌性,應對極端天氣」。展望行業觀察,頁66-71。
https://www.accenture.com/_acnmedia/PDF-109/Accenture-Enhance-Power-Grid-Resilience.pdf
5.台電月刊 (2017年2月1日),微電網見曙光 有利再生能源大布局。650期。
https://tpcjournal.taipower.com.tw/article/1916
6.台電月刊 (2018年12月19日),Small Is New Big 以小見大的電網未來。672期。
https://tpcjournal.taipower.com.tw/article/2887
7.台電月刊 (2022年11月17日),十年投5,645億 為臺灣電網把脈 訂定強韌計畫。719期。
https://tpcjournal.taipower.com.tw/article/5772
8.周桂蘭 (2020年6月22日),美國加州公共事業委員會發佈促進微電網發展和互聯互通的命令,以擴大微電網的市場滲透並加强電力服務的可靠性和彈性。能源知識庫。
https://km.twenergy.org.tw/Data/db_more?id=3784
9.洪穎怡 (2019年8月30日),微電網簡介。TEPA台灣電力企業聯合會電子報,第十二期。
http://www.tepa108.org.tw/EpaperHtm/20190830175248.htm
10.胡毅、王逢偉 (2020年11月7日),儲能技術與微電網的重要發展。能源教育資源總中心,專家專欄。
https://learnenergy.tw/index.php?inter=knowledge&caid=4&id=558
11.陳芃暉 (2022),智慧微電網的佈建與優勢。中鼎集團電子報,No. 473。
https://www.ctci.com/e-newsletter/CH/473/technology/article-01.html
12.張永瑞 (2019年11月29日),智慧微電網技術研發現況。
https://speakerdeck.com/learnenergy/zhi-hui-wei-dian-wang-ji-shu-yan-fa-xian-kuang-zhang-yong-rui-zu-chang
13.許志義 (2022年12月22日),能源雙軸轉型策略。中華大學。
https://youtu.be/JO7SYryLui8
14.劉庭莉 (2022年4月11日),七原鄉可自主供電72小時 台電屏東防災型微電網啟用。環境資訊中心。
https://e-info.org.tw/node/233823
15.劉嫈楓 (2023年2月24日),氣候變遷因應法上路!淨零目標入法、徵收碳費、設置溫管基金 修法重點一次看。聯合新聞網。
https://ubrand.udn.com/ubrand/story/12117/6989827
zh_TW