學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

  • No doi shows Citation Infomation
題名 新冠肺炎疫苗之專利佈局分析-以現代公司為例
Patent Portfolio Analysis of COVID-19 Vaccine: A Case Study of ModernaTX, Inc.
作者 施瑩欣
Shih, Ying-Hsin
貢獻者 陳秉訓
Chen, Ping-Hsun
施瑩欣
Shih, Ying-Hsin
關鍵詞 新冠肺炎疫苗
專利家族
專利佈局
COVID-19 Vaccine
Patent Families
Patent Portfolio
日期 2022
上傳時間 1-Sep-2023 14:50:35 (UTC+8)
摘要 2019年底,新型冠狀病毒出現而導致全球疫情爆發,面對突如其來的新病毒,各大公司刻不容緩,皆加緊腳步針對各方面的應對措施進行研發,而疫苗則是其中一項大家爭先研究的對象。相較於歷史悠久的藥廠,現代公司(Moderna, Inc.)作為一間2010年創辦的新創公司,卻能獲得美國國家衛生院贊助,利用最新技術研發出效力高達94.10%的mRNA疫苗,於全球市場中佔有龍頭地位。
展開現代公司的發展歷程,能夠看到數個堪稱里程碑的重大進展,本研究欲探討其如何透過專利佈局保護這些重要技術,尤其對於COVID-19所研發出的mRNA-1273疫苗相關專利,此為其目前唯一上市的疫苗,現代公司是如何藉由過去進程上的專利策略,來延伸保護此技術。
研究中檢索並分析相關專利的基本資訊及重要技術專利之文本內容,分為mRNA-1273專利技術探討、專利家族分析及整體專利分析此三方面進行探究,並發現現代公司於申請專利時似乎有依循特定的模式,首先在發明人之分析中觀察到其有將研究人員分組進行研發之情況,而技術有重大進展時,會以專利合作條約(PCT)作為同時向多國申請專利的途徑,並於後續隨著研發進程,提出美國專利連續申請案(Continuation Application),以保護其在此技術領域之最新的發明成果。在專利佈局上,現代公司針對不同的技術則會有不同的策略,且以專利組合來提高對技術的保護能力。
透過分析現代公司的專利佈局模式,探究台灣的生技新創公司是否能以此為借鏡,增加其研發成果的商業價值,進而發展出相似的成功軌跡。
At the end of 2019, the emergence of a new coronavirus has led to a global outbreak of COVID-19. Face to the sudden new virus, major companies have stepped up their efforts to develop responses in various areas, and vaccines are one of the first targets of research. Moderna, Inc., a start-up company founded in 2010, has been able to get funded by National Institutes of Health and use the latest technology to develop an mRNA vaccine with 94.10% efficacy and occupies a leading position in the global market. This study aims to investigate how Moderna has protected these important technologies through its patent portfolio, particularly the patent related to the mRNA-1273 vaccine developed for COVID-19, and how Moderna protect its latest technology.
In this research, the basic information of the relevant patents and the contents of the important technology patents were retrieved and analyzed, and the analysis was divided into three aspects. Following a specific pattern, firstly, it was observed that they have grouped researchers for R&D, and when the technology has made significant progress, Moderna will use PCT as a way to apply for patents in multiple countries at the same time and then file a Continuation Application to protect its latest inventions. In terms of patent strategies, Moderna has different ways of layout for patent portfolio to enhance the protection of the technology.
By analyzing the patent application activity of Moderna, we explore whether start-up companies in Taiwan can take this as a model to increase the commercial value of their R&D results, and then construct a similar path of success.
參考文獻 Baden, L. R., El Sahly, H. M., Essink, B., Kotloff, K., Frey, S., Novak, R., Diemert, D., Spector, S. A., Rouphael, N., Creech, C. B., McGettigan, J., Khetan, S., Segall, N., Solis, J., Brosz, A., Fierro, C., Schwartz, H., Neuzil, K., Corey, L., . . . Group, C. S. (2021). Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med, 384(5), 403-416. https://doi.org/10.1056/NEJMoa2035389
Bayati, A., Kumar, R., Francis, V., & McPherson, P. S. (2021). SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. J Biol Chem, 296, 100306. https://doi.org/10.1016/j.jbc.2021.100306
Bestle, D., Heindl, M. R., Limburg, H., Van Lam van, T., Pilgram, O., Moulton, H., Stein, D. A., Hardes, K., Eickmann, M., Dolnik, O., Rohde, C., Klenk, H. D., Garten, W., Steinmetzer, T., & Bottcher-Friebertshauser, E. (2020). TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance, 3(9). https://doi.org/10.26508/lsa.202000786
Bettini, E., & Locci, M. (2021). SARS-CoV-2 mRNA Vaccines: Immunological Mechanism and Beyond. Vaccines (Basel), 9(2). https://doi.org/10.3390/vaccines9020147
Cdc Covid- Response Team. (2020a). Characteristics of Health Care Personnel with COVID-19 - United States, February 12-April 9, 2020. MMWR Morb Mortal Wkly Rep, 69(15), 477-481. https://doi.org/10.15585/mmwr.mm6915e6
Cdc Covid- Response Team. (2020b). Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) - United States, February 12-March 16, 2020. MMWR Morb Mortal Wkly Rep, 69(12), 343-346. https://doi.org/10.15585/mmwr.mm6912e2
Chalkias, S., Harper, C., Vrbicky, K., Walsh, S. R., Essink, B., Brosz, A., ... & Das, R. (2022). A Bivalent Omicron-containing Booster Vaccine Against Covid-19. medRxiv. https://doi.org/10.1101/2022.06.24.22276703
Chan, J. F., Yuan, S., Kok, K. H., To, K. K., Chu, H., Yang, J., Xing, F., Liu, J., Yip, C. C., Poon, R. W., Tsoi, H. W., Lo, S. K., Chan, K. H., Poon, V. K., Chan, W. M., Ip, J. D., Cai, J. P., Cheng, V. C., Chen, H., . . . Yuen, K. Y. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet, 395(10223), 514-523. https://doi.org/10.1016/S0140-6736(20)30154-9
Chen, B. M., Cheng, T. L., & Roffler, S. R. (2021). Polyethylene Glycol Immunogenicity: Theoretical, Clinical, and Practical Aspects of Anti-Polyethylene Glycol Antibodies. ACS Nano, 15(9), 14022-14048. https://doi.org/10.1021/acsnano.1c05922
Chen, P. H. (2021). Taiwan’s Efforts to Recreate Remdesivir. Biotechnology Law Report, 40(3), 174-183. https://doi.org/10.1089/blr.2021.29227.phc
Chen, W. H., Strych, U., Hotez, P. J., & Bottazzi, M. E. (2020). The SARS-CoV-2 Vaccine Pipeline: an Overview. Curr Trop Med Rep, 7(2), 61-64. https://doi.org/10.1007/s40475-020-00201-6
Chu, L., McPhee, R., Huang, W., Bennett, H., Pajon, R., Nestorova, B., Leav, B., & m, R. N. A. S. G. (2021). A preliminary report of a randomized controlled phase 2 trial of the safety and immunogenicity of mRNA-1273 SARS-CoV-2 vaccine. Vaccine, 39(20), 2791-2799. https://doi.org/10.1016/j.vaccine.2021.02.007
Connors, M., Graham, B. S., Lane, H. C., & Fauci, A. S. (2021). SARS-CoV-2 Vaccines: Much Accomplished, Much to Learn. Ann Intern Med, 174(5), 687-690. https://doi.org/10.7326/M21-0111
Corbett, K. S., Edwards, D. K., Leist, S. R., Abiona, O. M., Boyoglu-Barnum, S., Gillespie, R. A., Himansu, S., Schafer, A., Ziwawo, C. T., DiPiazza, A. T., Dinnon, K. H., Elbashir, S. M., Shaw, C. A., Woods, A., Fritch, E. J., Martinez, D. R., Bock, K. W., Minai, M., Nagata, B. M., . . . Graham, B. S. (2020). SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature, 586(7830), 567-571. https://doi.org/10.1038/s41586-020-2622-0
Corbett, K. S., Flynn, B., Foulds, K. E., Francica, J. R., Boyoglu-Barnum, S., Werner, A. P., Flach, B., O`Connell, S., Bock, K. W., Minai, M., Nagata, B. M., Andersen, H., Martinez, D. R., Noe, A. T., Douek, N., Donaldson, M. M., Nji, N. N., Alvarado, G. S., Edwards, D. K., . . . Graham, B. S. (2020). Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N Engl J Med, 383(16), 1544-1555. https://doi.org/10.1056/NEJMoa2024671
Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. (2020). The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol, 5(4), 536-544. https://doi.org/10.1038/s41564-020-0695-z
Creech, C. B., Anderson, E., Berthaud, V., Yildirim, I., Atz, A. M., Melendez Baez, I., ... & Schnyder Ghamloush, S. (2022). Evaluation of mRNA-1273 COVID-19 vaccine in children 6 to 11 years of age. New England Journal of Medicine. https://doi.org/10.1056/NEJMoa2203315
Edara, V. V., Hudson, W. H., Xie, X., Ahmed, R., & Suthar, M. S. (2021). Neutralizing Antibodies Against SARS-CoV-2 Variants After Infection and Vaccination. JAMA, 325(18), 1896-1898. https://doi.org/10.1001/jama.2021.4388
Graham, B. S., Mascola, J. R., & Fauci, A. S. (2018). Novel Vaccine Technologies: Essential Components of an Adequate Response to Emerging Viral Diseases. JAMA, 319(14), 1431-1432. https://doi.org/10.1001/jama.2018.0345
Granstrand, O. (1999). The economics and management of intellectual property : towards intellectual capitalism. E. Elgar Pub.
Guo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y. Y., Chen, S. D., Jin, H. J., Tan, K. S., Wang, D. Y., & Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res, 7(1), 11. https://doi.org/10.1186/s40779-020-00240-0
Heath, P. T., Galiza, E. P., Baxter, D. N., Boffito, M., Browne, D., Burns, F., Chadwick, D. R., Clark, R., Cosgrove, C., Galloway, J., Goodman, A. L., Heer, A., Higham, A., Iyengar, S., Jamal, A., Jeanes, C., Kalra, P. A., Kyriakidou, C., McAuley, D. F., . . . nCo, V. S. G. (2021). Safety and Efficacy of NVX-CoV2373 Covid-19 Vaccine. N Engl J Med, 385(13), 1172-1183. https://doi.org/10.1056/NEJMoa2107659
Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Muller, M. A., Drosten, C., & Pohlmann, S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181(2), 271-280 e278. https://doi.org/10.1016/j.cell.2020.02.052
Hofmann, H., Pyrc, K., van der Hoek, L., Geier, M., Berkhout, B., & Pohlmann, S. (2005). Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci U S A, 102(22), 7988-7993. https://doi.org/10.1073/pnas.0409465102
Hsieh, S. M., Liu, M. C., Chen, Y. H., Lee, W. S., Hwang, S. J., Cheng, S. H., Ko, W. C., Hwang, K. P., Wang, N. C., Lee, Y. L., Lin, Y. L., Shih, S. R., Huang, C. G., Liao, C. C., Liang, J. J., Chang, C. S., Chen, C., Lien, C. E., Tai, I. C., & Lin, T. Y. (2021). Safety and immunogenicity of CpG 1018 and aluminium hydroxide-adjuvanted SARS-CoV-2 S-2P protein vaccine MVC-COV1901: interim results of a large-scale, double-blind, randomised, placebo-controlled phase 2 trial in Taiwan. Lancet Respir Med, 9(12), 1396-1406. https://doi.org/10.1016/S2213-2600(21)00402-1
Jackson, L. A., Anderson, E. J., Rouphael, N. G., Roberts, P. C., Makhene, M., Coler, R. N., McCullough, M. P., Chappell, J. D., Denison, M. R., Stevens, L. J., Pruijssers, A. J., McDermott, A., Flach, B., Doria-Rose, N. A., Corbett, K. S., Morabito, K. M., O`Dell, S., Schmidt, S. D., Swanson, P. A., 2nd, . . . m, R. N. A. S. G. (2020). An mRNA Vaccine against SARS-CoV-2 - Preliminary Report. N Engl J Med, 383(20), 1920-1931. https://doi.org/10.1056/NEJMoa2022483
Jara, A., Undurraga, E. A., Gonzalez, C., Paredes, F., Fontecilla, T., Jara, G., Pizarro, A., Acevedo, J., Leo, K., Leon, F., Sans, C., Leighton, P., Suarez, P., Garcia-Escorza, H., & Araos, R. (2021). Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Chile. N Engl J Med, 385(10), 875-884. https://doi.org/10.1056/NEJMoa2107715
Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., Somasundaran, M., Sullivan, J. L., Luzuriaga, K., Greenough, T. C., Choe, H., & Farzan, M. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426(6965), 450-454. https://doi.org/10.1038/nature02145
Liang, F., Lindgren, G., Lin, A., Thompson, E. A., Ols, S., Rohss, J., John, S., Hassett, K., Yuzhakov, O., Bahl, K., Brito, L. A., Salter, H., Ciaramella, G., & Lore, K. (2017). Efficient Targeting and Activation of Antigen-Presenting Cells In Vivo after Modified mRNA Vaccine Administration in Rhesus Macaques. Mol Ther, 25(12), 2635-2647. https://doi.org/10.1016/j.ymthe.2017.08.006
Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., . . . Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 395(10224), 565-574. https://doi.org/10.1016/S0140-6736(20)30251-8
Malik, J. A., Mulla, A. H., Farooqi, T., Pottoo, F. H., Anwar, S., & Rengasamy, K. R. R. (2021). Targets and strategies for vaccine development against SARS-CoV-2. Biomed Pharmacother, 137, 111254. https://doi.org/10.1016/j.biopha.2021.111254
Malone, B., Urakova, N., Snijder, E. J., & Campbell, E. A. (2022). Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design. Nat Rev Mol Cell Biol, 23(1), 21-39. https://doi.org/10.1038/s41580-021-00432-z
Martinez, C. (2011). Patent families: When do different definitions really matter? Scientometrics, 86(1), 39-63.
Masters, P. S. (2006). The molecular biology of coronaviruses. Adv Virus Res, 66, 193-292. https://doi.org/10.1016/S0065-3527(06)66005-3
Moderna, Inc. (2013). ASTRAZENECA AND MODERNA THERAPEUTICS ANNOUNCE EXCLUSIVE AGREEMENT TO DEVELOP PIONEERING MESSENGER RNA THERAPEUTICS™ IN CARDIOMETABOLIC DISEASES AND CANCER. https://investors.modernatx.com/news/default.aspx
Moderna, Inc. (2019). 2018 Annual Report. https://s29.q4cdn.com/435878511/files/doc_financials/2018/ar/Chasen-Richter-Moderna-Annual-Report-2018.pdf
Moderna, Inc. (2020a). News. https://investors.modernatx.com/news/default.aspx
Moderna, Inc. (2020b). Pipeline. https://web.archive.org/web/20200204103332/https://www.modernatx.com/pipeline
Moderna, Inc. (2020c). 2019 Annual Report. https://s29.q4cdn.com/435878511/files/doc_financials/2019/ar/Chasen-Richter-Moderna-Annual-Report-2019.pdf
Moderna, Inc. (2021). News. https://investors.modernatx.com/news/default.aspx
Moderna, Inc. (2022a). Moderna Seminar Series. Chapter 5: Lipid Nanoparticles. https://mrna-access.modernatx.com/resources/topicWebinarSeries
Moderna, Inc. (2022b). MODERNA SUES PFIZER AND BIONTECH FOR INFRINGING PATENTS CENTRAL TO MODERNA`S INNOVATIVE MRNA TECHNOLOGY PLATFORM. https://investors.modernatx.com/news/news-details/2022/Moderna-Sues-Pfizer-and-BioNTech-for-Infringing-Patents-Central-to-Modernas-Innovative-mRNA-Technology-Platform/default.aspx
Moderna, Inc. (2022c). Patents. https://www.modernatx.com/patents
Moderna, Inc. (2022d). STATEMENT BY MODERNA ON INTELLECTUAL PROPERTY MATTERS DURING THE COVID-19 PANDEMIC. https://investors.modernatx.com/Statements--Perspectives/Statements--Perspectives-Details/2020/Statement-by-Moderna-on-Intellectual-Property-Matters-during-the-COVID-19-Pandemic/default.aspx
Muthumani, K., Falzarano, D., Reuschel, E. L., Tingey, C., Flingai, S., Villarreal, D. O., Wise, M., Patel, A., Izmirly, A., Aljuaid, A., Seliga, A. M., Soule, G., Morrow, M., Kraynyak, K. A., Khan, A. S., Scott, D. P., Feldmann, F., LaCasse, R., Meade-White, K., . . . Weiner, D. B. (2015). A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates. Sci Transl Med, 7(301), 301ra132. https://doi.org/10.1126/scitranslmed.aac7462
National Institutes of Health. (2020). NIH clinical trial of investigational vaccine for COVID-19 begins. https://www.nih.gov/news-events/news-releases/nih-clinical-trial-investigational-vaccine-covid-19-begins
National Institutes of Health. (2022). COVID-19 Vaccines. https://covid19.nih.gov/covid-19-vaccines
Ou, T., Mou, H., Zhang, L., Ojha, A., Choe, H., & Farzan, M. (2021). Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2. PLoS Pathog, 17(1), e1009212. https://doi.org/10.1371/journal.ppat.1009212
Pardi, N., Hogan, M. J., Porter, F. W., & Weissman, D. (2018). mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov, 17(4), 261-279. https://doi.org/10.1038/nrd.2017.243
Pardi, N., Tuyishime, S., Muramatsu, H., Kariko, K., Mui, B. L., Tam, Y. K., Madden, T. D., Hope, M. J., & Weissman, D. (2015). Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J Control Release, 217, 345-351. https://doi.org/10.1016/j.jconrel.2015.08.007
Parham, P. (2015). The immune system (Fourth edition. ed.). W. W. Norton & Company.
Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J. L., Perez Marc, G., Moreira, E. D., Zerbini, C., Bailey, R., Swanson, K. A., Roychoudhury, S., Koury, K., Li, P., Kalina, W. V., Cooper, D., Frenck, R. W., Jr., Hammitt, L. L., . . . Group, C. C. T. (2020). Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med, 383(27), 2603-2615. https://doi.org/10.1056/NEJMoa2034577
Reichmuth, A. M., Oberli, M. A., Jaklenec, A., Langer, R., & Blankschtein, D. (2016). mRNA vaccine delivery using lipid nanoparticles. Ther Deliv, 7(5), 319-334. https://doi.org/10.4155/tde-2016-0006
Sabnis, S., Kumarasinghe, E. S., Salerno, T., Mihai, C., Ketova, T., Senn, J. J., Lynn, A., Bulychev, A., McFadyen, I., Chan, J., Almarsson, O., Stanton, M. G., & Benenato, K. E. (2018). A Novel Amino Lipid Series for mRNA Delivery: Improved Endosomal Escape and Sustained Pharmacology and Safety in Non-human Primates. Mol Ther, 26(6), 1509-1519. https://doi.org/10.1016/j.ymthe.2018.03.010
Sadoff, J., Gray, G., Vandebosch, A., Cardenas, V., Shukarev, G., Grinsztejn, B., Goepfert, P. A., Truyers, C., Van Dromme, I., Spiessens, B., Vingerhoets, J., Custers, J., Scheper, G., Robb, M. L., Treanor, J., Ryser, M. F., Barouch, D. H., Swann, E., Marovich, M. A., . . . Group, E. S. (2022). Final Analysis of Efficacy and Safety of Single-Dose Ad26.COV2.S. N Engl J Med, 386(9), 847-860. https://doi.org/10.1056/NEJMoa2117608
Salvatori, G., Luberto, L., Maffei, M., Aurisicchio, L., Roscilli, G., Palombo, F., & Marra, E. (2020). SARS-CoV-2 SPIKE PROTEIN: an optimal immunological target for vaccines. J Transl Med, 18(1), 222. https://doi.org/10.1186/s12967-020-02392-y
Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A., & Li, F. (2020). Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A, 117(21), 11727-11734. https://doi.org/10.1073/pnas.2003138117
Tanriover, M. D., Doganay, H. L., Akova, M., Guner, H. R., Azap, A., Akhan, S., Kose, S., Erdinc, F. S., Akalin, E. H., Tabak, O. F., Pullukcu, H., Batum, O., Simsek Yavuz, S., Turhan, O., Yildirmak, M. T., Koksal, I., Tasova, Y., Korten, V., Yilmaz, G., . . . CoronaVac Study, G. (2021). Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet, 398(10296), 213-222. https://doi.org/10.1016/S0140-6736(21)01429-X
Voysey, M., Costa Clemens, S. A., Madhi, S. A., Weckx, L. Y., Folegatti, P. M., Aley, P. K., Angus, B., Baillie, V. L., Barnabas, S. L., Bhorat, Q. E., Bibi, S., Briner, C., Cicconi, P., Clutterbuck, E. A., Collins, A. M., Cutland, C. L., Darton, T. C., Dheda, K., Dold, C., . . . Oxford, C. V. T. G. (2021). Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet, 397(10277), 881-891. https://doi.org/10.1016/S0140-6736(21)00432-3
Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell, 183(6), 1735. https://doi.org/10.1016/j.cell.2020.11.032
Wang, C., Zheng, X., Gai, W., Zhao, Y., Wang, H., Wang, H., Feng, N., Chi, H., Qiu, B., Li, N., Wang, T., Gao, Y., Yang, S., & Xia, X. (2017). MERS-CoV virus-like particles produced in insect cells induce specific humoural and cellular imminity in rhesus macaques. Oncotarget, 8(8), 12686-12694. https://doi.org/10.18632/oncotarget.8475
Wang, F., Kream, R. M., & Stefano, G. B. (2020). An Evidence Based Perspective on mRNA-SARS-CoV-2 Vaccine Development. Med Sci Monit, 26, e924700. https://doi.org/10.12659/MSM.924700
Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K. Y., Wang, Q., Zhou, H., Yan, J., & Qi, J. (2020). Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell, 181(4), 894-904 e899. https://doi.org/10.1016/j.cell.2020.03.045
Wang, Z., Schmidt, F., Weisblum, Y., Muecksch, F., Barnes, C. O., Finkin, S., Schaefer-Babajew, D., Cipolla, M., Gaebler, C., Lieberman, J. A., Oliveira, T. Y., Yang, Z., Abernathy, M. E., Huey-Tubman, K. E., Hurley, A., Turroja, M., West, K. A., Gordon, K., Millard, K. G., . . . Nussenzweig, M. C. (2021). mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature, 592(7855), 616-622. https://doi.org/10.1038/s41586-021-03324-6
Warren, L., Manos, P. D., Ahfeldt, T., Loh, Y. H., Li, H., Lau, F., Ebina, W., Mandal, P. K., Smith, Z. D., Meissner, A., Daley, G. Q., Brack, A. S., Collins, J. J., Cowan, C., Schlaeger, T. M., & Rossi, D. J. (2010). Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 7(5), 618-630. https://doi.org/10.1016/j.stem.2010.08.012
World Health Organization. (2020a). Novel Coronavirus (2019-nCoV) Situation Report – 22. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200211-sitrep-22-ncov.pdf
World Health Organization. (2020b). Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV). https://www.who.int/news/item/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov)
World Health Organization. (2022, Jul 3). WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int/
Wrobel, A. G., Benton, D. J., Xu, P., Roustan, C., Martin, S. R., Rosenthal, P. B., Skehel, J. J., & Gamblin, S. J. (2020). SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nat Struct Mol Biol, 27(8), 763-767. https://doi.org/10.1038/s41594-020-0468-7
Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., Hu, Y., Tao, Z. W., Tian, J. H., Pei, Y. Y., Yuan, M. L., Zhang, Y. L., Dai, F. H., Liu, Y., Wang, Q. M., Zheng, J. J., Xu, L., Holmes, E. C., & Zhang, Y. Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265-269. https://doi.org/10.1038/s41586-020-2008-3
Xu, X., Chen, P., Wang, J., Feng, J., Zhou, H., Li, X., Zhong, W., & Hao, P. (2020). Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci, 63(3), 457-460. https://doi.org/10.1007/s11427-020-1637-5
Yang, Z. Y., Kong, W. P., Huang, Y., Roberts, A., Murphy, B. R., Subbarao, K., & Nabel, G. J. (2004). A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature, 428(6982), 561-564. https://doi.org/10.1038/nature02463
Zangi, L., Lui, K. O., von Gise, A., Ma, Q., Ebina, W., Ptaszek, L. M., Spater, D., Xu, H., Tabebordbar, M., Gorbatov, R., Sena, B., Nahrendorf, M., Briscoe, D. M., Li, R. A., Wagers, A. J., Rossi, D. J., Pu, W. T., & Chien, K. R. (2013). Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat Biotechnol, 31(10), 898-907. https://doi.org/10.1038/nbt.2682
Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., Chen, H. D., Chen, J., Luo, Y., Guo, H., Jiang, R. D., Liu, M. Q., Chen, Y., Shen, X. R., Wang, X., . . . Shi, Z. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270-273. https://doi.org/10.1038/s41586-020-2012-7
Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., Tan, W., China Novel Coronavirus, I., & Research, T. (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med, 382(8), 727-733. https://doi.org/10.1056/NEJMoa2001017
Huang, Kathy. (2022, Jun 9). 莫德納推新型追加劑!二價疫苗更能抗Omicron。基因線上。https://geneonline.news/moderna-omicron-booster/
孚創雲端(2022a)。全文資訊。https://helpcenter.inquartik.com/zh-hk/%E5%85%A8%E6%96%87%E8%B3%87%E8%A8%8A
孚創雲端(2022b)。專利文獻數據範圍。https://app.patentcloud.com/data-status.html?__hstc=92158149.bb12c559382a96cc47aa8195cee8afd2.1657575509348.1658091894174.1658138250601.6&__hssc=92158149.4.1658281984375&__hsfp=1808647293&_gl=1*ourpmn*_ga*NTgyNDI5NjcuMTY1NzU3NTUwOQ..*_ga_GTLMQEG9VF*MTY1ODI5MzEzNS40NS4xLjE2NTgyOTMzMjkuMA..&_ga=2.109879686.284098141.1658042089-58242967.1657575509
張玄竺、廖月娟、鍾榕芳、黃瑜安(譯)(2022)。疫苗商戰:新冠危機下AZ、BNT、輝瑞、莫德納、嬌生、Novavax的生死競賽。臺北市:天下文化。 (Gregory Zuckerman, 2021)
陳秉訓(2014)。台灣醫院的台灣專利申請行為之分析。臺北科技大學學報,46(1),47-61。
陳達仁、黃慕萱(2018)。專利資訊檢索、分析與策略。華泰文化。
郭妍希(2021年05月21日)。莫德納考慮赴亞洲製造疫苗!CEO:已開始接洽日企。MoneyDJ新聞。https://www.moneydj.com/kmdj/news/newsviewer.aspx?a=6fca31b6-1b74-452f-ac10-03d475c53fb5
楊智傑(2014)。專利法。新學林。
葉士緯、洪菁蔓、周光宇(2016)。我國導入臨時申請案制度之可行性探討。智慧財產權月刊,205,40-64。
經濟部智慧財產局(2022)。專利審查基準彙編(111年7月1日施行版)。
劉國讚(2021)。國際專利分析與布局。元照。
謝銘洋(2004)。智慧財產權之基礎理論。翰蘆圖書。
描述 碩士
國立政治大學
科技管理與智慧財產研究所
109364218
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0109364218
資料類型 thesis
dc.contributor.advisor 陳秉訓zh_TW
dc.contributor.advisor Chen, Ping-Hsunen_US
dc.contributor.author (Authors) 施瑩欣zh_TW
dc.contributor.author (Authors) Shih, Ying-Hsinen_US
dc.creator (作者) 施瑩欣zh_TW
dc.creator (作者) Shih, Ying-Hsinen_US
dc.date (日期) 2022en_US
dc.date.accessioned 1-Sep-2023 14:50:35 (UTC+8)-
dc.date.available 1-Sep-2023 14:50:35 (UTC+8)-
dc.date.issued (上傳時間) 1-Sep-2023 14:50:35 (UTC+8)-
dc.identifier (Other Identifiers) G0109364218en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/146875-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 科技管理與智慧財產研究所zh_TW
dc.description (描述) 109364218zh_TW
dc.description.abstract (摘要) 2019年底,新型冠狀病毒出現而導致全球疫情爆發,面對突如其來的新病毒,各大公司刻不容緩,皆加緊腳步針對各方面的應對措施進行研發,而疫苗則是其中一項大家爭先研究的對象。相較於歷史悠久的藥廠,現代公司(Moderna, Inc.)作為一間2010年創辦的新創公司,卻能獲得美國國家衛生院贊助,利用最新技術研發出效力高達94.10%的mRNA疫苗,於全球市場中佔有龍頭地位。
展開現代公司的發展歷程,能夠看到數個堪稱里程碑的重大進展,本研究欲探討其如何透過專利佈局保護這些重要技術,尤其對於COVID-19所研發出的mRNA-1273疫苗相關專利,此為其目前唯一上市的疫苗,現代公司是如何藉由過去進程上的專利策略,來延伸保護此技術。
研究中檢索並分析相關專利的基本資訊及重要技術專利之文本內容,分為mRNA-1273專利技術探討、專利家族分析及整體專利分析此三方面進行探究,並發現現代公司於申請專利時似乎有依循特定的模式,首先在發明人之分析中觀察到其有將研究人員分組進行研發之情況,而技術有重大進展時,會以專利合作條約(PCT)作為同時向多國申請專利的途徑,並於後續隨著研發進程,提出美國專利連續申請案(Continuation Application),以保護其在此技術領域之最新的發明成果。在專利佈局上,現代公司針對不同的技術則會有不同的策略,且以專利組合來提高對技術的保護能力。
透過分析現代公司的專利佈局模式,探究台灣的生技新創公司是否能以此為借鏡,增加其研發成果的商業價值,進而發展出相似的成功軌跡。
zh_TW
dc.description.abstract (摘要) At the end of 2019, the emergence of a new coronavirus has led to a global outbreak of COVID-19. Face to the sudden new virus, major companies have stepped up their efforts to develop responses in various areas, and vaccines are one of the first targets of research. Moderna, Inc., a start-up company founded in 2010, has been able to get funded by National Institutes of Health and use the latest technology to develop an mRNA vaccine with 94.10% efficacy and occupies a leading position in the global market. This study aims to investigate how Moderna has protected these important technologies through its patent portfolio, particularly the patent related to the mRNA-1273 vaccine developed for COVID-19, and how Moderna protect its latest technology.
In this research, the basic information of the relevant patents and the contents of the important technology patents were retrieved and analyzed, and the analysis was divided into three aspects. Following a specific pattern, firstly, it was observed that they have grouped researchers for R&D, and when the technology has made significant progress, Moderna will use PCT as a way to apply for patents in multiple countries at the same time and then file a Continuation Application to protect its latest inventions. In terms of patent strategies, Moderna has different ways of layout for patent portfolio to enhance the protection of the technology.
By analyzing the patent application activity of Moderna, we explore whether start-up companies in Taiwan can take this as a model to increase the commercial value of their R&D results, and then construct a similar path of success.
en_US
dc.description.tableofcontents 第一章 緒論 9
1.1研究背景 9
1.2研究動機與目的 12
1.3研究架構 13
1.4研究限制 13
第二章 文獻探討 15
2.1新型冠狀病毒(Severe Acute Respiratory Syndrome Coronavirus 2,SARS-CoV-2) 15
2.2 COVID-19疫苗 17
2.3 研究對象發展歷程 20
2.4專利制度與佈局策略 25
第三章 研究方法 29
3.1研究流程 29
3.2專利檢索 29
3.3專利分析 33
第四章 專利檢索及分析結果 37
4.1專利檢索結果 37
4.2專利分析 40
第五章 結論與建議 69
5.1現代公司之專利佈局 69
5.2未來建議與展望 71
參考文獻 73
附錄 87
zh_TW
dc.format.extent 4056102 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0109364218en_US
dc.subject (關鍵詞) 新冠肺炎疫苗zh_TW
dc.subject (關鍵詞) 專利家族zh_TW
dc.subject (關鍵詞) 專利佈局zh_TW
dc.subject (關鍵詞) COVID-19 Vaccineen_US
dc.subject (關鍵詞) Patent Familiesen_US
dc.subject (關鍵詞) Patent Portfolioen_US
dc.title (題名) 新冠肺炎疫苗之專利佈局分析-以現代公司為例zh_TW
dc.title (題名) Patent Portfolio Analysis of COVID-19 Vaccine: A Case Study of ModernaTX, Inc.en_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) Baden, L. R., El Sahly, H. M., Essink, B., Kotloff, K., Frey, S., Novak, R., Diemert, D., Spector, S. A., Rouphael, N., Creech, C. B., McGettigan, J., Khetan, S., Segall, N., Solis, J., Brosz, A., Fierro, C., Schwartz, H., Neuzil, K., Corey, L., . . . Group, C. S. (2021). Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med, 384(5), 403-416. https://doi.org/10.1056/NEJMoa2035389
Bayati, A., Kumar, R., Francis, V., & McPherson, P. S. (2021). SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. J Biol Chem, 296, 100306. https://doi.org/10.1016/j.jbc.2021.100306
Bestle, D., Heindl, M. R., Limburg, H., Van Lam van, T., Pilgram, O., Moulton, H., Stein, D. A., Hardes, K., Eickmann, M., Dolnik, O., Rohde, C., Klenk, H. D., Garten, W., Steinmetzer, T., & Bottcher-Friebertshauser, E. (2020). TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance, 3(9). https://doi.org/10.26508/lsa.202000786
Bettini, E., & Locci, M. (2021). SARS-CoV-2 mRNA Vaccines: Immunological Mechanism and Beyond. Vaccines (Basel), 9(2). https://doi.org/10.3390/vaccines9020147
Cdc Covid- Response Team. (2020a). Characteristics of Health Care Personnel with COVID-19 - United States, February 12-April 9, 2020. MMWR Morb Mortal Wkly Rep, 69(15), 477-481. https://doi.org/10.15585/mmwr.mm6915e6
Cdc Covid- Response Team. (2020b). Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) - United States, February 12-March 16, 2020. MMWR Morb Mortal Wkly Rep, 69(12), 343-346. https://doi.org/10.15585/mmwr.mm6912e2
Chalkias, S., Harper, C., Vrbicky, K., Walsh, S. R., Essink, B., Brosz, A., ... & Das, R. (2022). A Bivalent Omicron-containing Booster Vaccine Against Covid-19. medRxiv. https://doi.org/10.1101/2022.06.24.22276703
Chan, J. F., Yuan, S., Kok, K. H., To, K. K., Chu, H., Yang, J., Xing, F., Liu, J., Yip, C. C., Poon, R. W., Tsoi, H. W., Lo, S. K., Chan, K. H., Poon, V. K., Chan, W. M., Ip, J. D., Cai, J. P., Cheng, V. C., Chen, H., . . . Yuen, K. Y. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet, 395(10223), 514-523. https://doi.org/10.1016/S0140-6736(20)30154-9
Chen, B. M., Cheng, T. L., & Roffler, S. R. (2021). Polyethylene Glycol Immunogenicity: Theoretical, Clinical, and Practical Aspects of Anti-Polyethylene Glycol Antibodies. ACS Nano, 15(9), 14022-14048. https://doi.org/10.1021/acsnano.1c05922
Chen, P. H. (2021). Taiwan’s Efforts to Recreate Remdesivir. Biotechnology Law Report, 40(3), 174-183. https://doi.org/10.1089/blr.2021.29227.phc
Chen, W. H., Strych, U., Hotez, P. J., & Bottazzi, M. E. (2020). The SARS-CoV-2 Vaccine Pipeline: an Overview. Curr Trop Med Rep, 7(2), 61-64. https://doi.org/10.1007/s40475-020-00201-6
Chu, L., McPhee, R., Huang, W., Bennett, H., Pajon, R., Nestorova, B., Leav, B., & m, R. N. A. S. G. (2021). A preliminary report of a randomized controlled phase 2 trial of the safety and immunogenicity of mRNA-1273 SARS-CoV-2 vaccine. Vaccine, 39(20), 2791-2799. https://doi.org/10.1016/j.vaccine.2021.02.007
Connors, M., Graham, B. S., Lane, H. C., & Fauci, A. S. (2021). SARS-CoV-2 Vaccines: Much Accomplished, Much to Learn. Ann Intern Med, 174(5), 687-690. https://doi.org/10.7326/M21-0111
Corbett, K. S., Edwards, D. K., Leist, S. R., Abiona, O. M., Boyoglu-Barnum, S., Gillespie, R. A., Himansu, S., Schafer, A., Ziwawo, C. T., DiPiazza, A. T., Dinnon, K. H., Elbashir, S. M., Shaw, C. A., Woods, A., Fritch, E. J., Martinez, D. R., Bock, K. W., Minai, M., Nagata, B. M., . . . Graham, B. S. (2020). SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature, 586(7830), 567-571. https://doi.org/10.1038/s41586-020-2622-0
Corbett, K. S., Flynn, B., Foulds, K. E., Francica, J. R., Boyoglu-Barnum, S., Werner, A. P., Flach, B., O`Connell, S., Bock, K. W., Minai, M., Nagata, B. M., Andersen, H., Martinez, D. R., Noe, A. T., Douek, N., Donaldson, M. M., Nji, N. N., Alvarado, G. S., Edwards, D. K., . . . Graham, B. S. (2020). Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N Engl J Med, 383(16), 1544-1555. https://doi.org/10.1056/NEJMoa2024671
Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. (2020). The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol, 5(4), 536-544. https://doi.org/10.1038/s41564-020-0695-z
Creech, C. B., Anderson, E., Berthaud, V., Yildirim, I., Atz, A. M., Melendez Baez, I., ... & Schnyder Ghamloush, S. (2022). Evaluation of mRNA-1273 COVID-19 vaccine in children 6 to 11 years of age. New England Journal of Medicine. https://doi.org/10.1056/NEJMoa2203315
Edara, V. V., Hudson, W. H., Xie, X., Ahmed, R., & Suthar, M. S. (2021). Neutralizing Antibodies Against SARS-CoV-2 Variants After Infection and Vaccination. JAMA, 325(18), 1896-1898. https://doi.org/10.1001/jama.2021.4388
Graham, B. S., Mascola, J. R., & Fauci, A. S. (2018). Novel Vaccine Technologies: Essential Components of an Adequate Response to Emerging Viral Diseases. JAMA, 319(14), 1431-1432. https://doi.org/10.1001/jama.2018.0345
Granstrand, O. (1999). The economics and management of intellectual property : towards intellectual capitalism. E. Elgar Pub.
Guo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y. Y., Chen, S. D., Jin, H. J., Tan, K. S., Wang, D. Y., & Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res, 7(1), 11. https://doi.org/10.1186/s40779-020-00240-0
Heath, P. T., Galiza, E. P., Baxter, D. N., Boffito, M., Browne, D., Burns, F., Chadwick, D. R., Clark, R., Cosgrove, C., Galloway, J., Goodman, A. L., Heer, A., Higham, A., Iyengar, S., Jamal, A., Jeanes, C., Kalra, P. A., Kyriakidou, C., McAuley, D. F., . . . nCo, V. S. G. (2021). Safety and Efficacy of NVX-CoV2373 Covid-19 Vaccine. N Engl J Med, 385(13), 1172-1183. https://doi.org/10.1056/NEJMoa2107659
Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Muller, M. A., Drosten, C., & Pohlmann, S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181(2), 271-280 e278. https://doi.org/10.1016/j.cell.2020.02.052
Hofmann, H., Pyrc, K., van der Hoek, L., Geier, M., Berkhout, B., & Pohlmann, S. (2005). Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci U S A, 102(22), 7988-7993. https://doi.org/10.1073/pnas.0409465102
Hsieh, S. M., Liu, M. C., Chen, Y. H., Lee, W. S., Hwang, S. J., Cheng, S. H., Ko, W. C., Hwang, K. P., Wang, N. C., Lee, Y. L., Lin, Y. L., Shih, S. R., Huang, C. G., Liao, C. C., Liang, J. J., Chang, C. S., Chen, C., Lien, C. E., Tai, I. C., & Lin, T. Y. (2021). Safety and immunogenicity of CpG 1018 and aluminium hydroxide-adjuvanted SARS-CoV-2 S-2P protein vaccine MVC-COV1901: interim results of a large-scale, double-blind, randomised, placebo-controlled phase 2 trial in Taiwan. Lancet Respir Med, 9(12), 1396-1406. https://doi.org/10.1016/S2213-2600(21)00402-1
Jackson, L. A., Anderson, E. J., Rouphael, N. G., Roberts, P. C., Makhene, M., Coler, R. N., McCullough, M. P., Chappell, J. D., Denison, M. R., Stevens, L. J., Pruijssers, A. J., McDermott, A., Flach, B., Doria-Rose, N. A., Corbett, K. S., Morabito, K. M., O`Dell, S., Schmidt, S. D., Swanson, P. A., 2nd, . . . m, R. N. A. S. G. (2020). An mRNA Vaccine against SARS-CoV-2 - Preliminary Report. N Engl J Med, 383(20), 1920-1931. https://doi.org/10.1056/NEJMoa2022483
Jara, A., Undurraga, E. A., Gonzalez, C., Paredes, F., Fontecilla, T., Jara, G., Pizarro, A., Acevedo, J., Leo, K., Leon, F., Sans, C., Leighton, P., Suarez, P., Garcia-Escorza, H., & Araos, R. (2021). Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Chile. N Engl J Med, 385(10), 875-884. https://doi.org/10.1056/NEJMoa2107715
Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., Somasundaran, M., Sullivan, J. L., Luzuriaga, K., Greenough, T. C., Choe, H., & Farzan, M. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426(6965), 450-454. https://doi.org/10.1038/nature02145
Liang, F., Lindgren, G., Lin, A., Thompson, E. A., Ols, S., Rohss, J., John, S., Hassett, K., Yuzhakov, O., Bahl, K., Brito, L. A., Salter, H., Ciaramella, G., & Lore, K. (2017). Efficient Targeting and Activation of Antigen-Presenting Cells In Vivo after Modified mRNA Vaccine Administration in Rhesus Macaques. Mol Ther, 25(12), 2635-2647. https://doi.org/10.1016/j.ymthe.2017.08.006
Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., . . . Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 395(10224), 565-574. https://doi.org/10.1016/S0140-6736(20)30251-8
Malik, J. A., Mulla, A. H., Farooqi, T., Pottoo, F. H., Anwar, S., & Rengasamy, K. R. R. (2021). Targets and strategies for vaccine development against SARS-CoV-2. Biomed Pharmacother, 137, 111254. https://doi.org/10.1016/j.biopha.2021.111254
Malone, B., Urakova, N., Snijder, E. J., & Campbell, E. A. (2022). Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design. Nat Rev Mol Cell Biol, 23(1), 21-39. https://doi.org/10.1038/s41580-021-00432-z
Martinez, C. (2011). Patent families: When do different definitions really matter? Scientometrics, 86(1), 39-63.
Masters, P. S. (2006). The molecular biology of coronaviruses. Adv Virus Res, 66, 193-292. https://doi.org/10.1016/S0065-3527(06)66005-3
Moderna, Inc. (2013). ASTRAZENECA AND MODERNA THERAPEUTICS ANNOUNCE EXCLUSIVE AGREEMENT TO DEVELOP PIONEERING MESSENGER RNA THERAPEUTICS™ IN CARDIOMETABOLIC DISEASES AND CANCER. https://investors.modernatx.com/news/default.aspx
Moderna, Inc. (2019). 2018 Annual Report. https://s29.q4cdn.com/435878511/files/doc_financials/2018/ar/Chasen-Richter-Moderna-Annual-Report-2018.pdf
Moderna, Inc. (2020a). News. https://investors.modernatx.com/news/default.aspx
Moderna, Inc. (2020b). Pipeline. https://web.archive.org/web/20200204103332/https://www.modernatx.com/pipeline
Moderna, Inc. (2020c). 2019 Annual Report. https://s29.q4cdn.com/435878511/files/doc_financials/2019/ar/Chasen-Richter-Moderna-Annual-Report-2019.pdf
Moderna, Inc. (2021). News. https://investors.modernatx.com/news/default.aspx
Moderna, Inc. (2022a). Moderna Seminar Series. Chapter 5: Lipid Nanoparticles. https://mrna-access.modernatx.com/resources/topicWebinarSeries
Moderna, Inc. (2022b). MODERNA SUES PFIZER AND BIONTECH FOR INFRINGING PATENTS CENTRAL TO MODERNA`S INNOVATIVE MRNA TECHNOLOGY PLATFORM. https://investors.modernatx.com/news/news-details/2022/Moderna-Sues-Pfizer-and-BioNTech-for-Infringing-Patents-Central-to-Modernas-Innovative-mRNA-Technology-Platform/default.aspx
Moderna, Inc. (2022c). Patents. https://www.modernatx.com/patents
Moderna, Inc. (2022d). STATEMENT BY MODERNA ON INTELLECTUAL PROPERTY MATTERS DURING THE COVID-19 PANDEMIC. https://investors.modernatx.com/Statements--Perspectives/Statements--Perspectives-Details/2020/Statement-by-Moderna-on-Intellectual-Property-Matters-during-the-COVID-19-Pandemic/default.aspx
Muthumani, K., Falzarano, D., Reuschel, E. L., Tingey, C., Flingai, S., Villarreal, D. O., Wise, M., Patel, A., Izmirly, A., Aljuaid, A., Seliga, A. M., Soule, G., Morrow, M., Kraynyak, K. A., Khan, A. S., Scott, D. P., Feldmann, F., LaCasse, R., Meade-White, K., . . . Weiner, D. B. (2015). A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates. Sci Transl Med, 7(301), 301ra132. https://doi.org/10.1126/scitranslmed.aac7462
National Institutes of Health. (2020). NIH clinical trial of investigational vaccine for COVID-19 begins. https://www.nih.gov/news-events/news-releases/nih-clinical-trial-investigational-vaccine-covid-19-begins
National Institutes of Health. (2022). COVID-19 Vaccines. https://covid19.nih.gov/covid-19-vaccines
Ou, T., Mou, H., Zhang, L., Ojha, A., Choe, H., & Farzan, M. (2021). Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2. PLoS Pathog, 17(1), e1009212. https://doi.org/10.1371/journal.ppat.1009212
Pardi, N., Hogan, M. J., Porter, F. W., & Weissman, D. (2018). mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov, 17(4), 261-279. https://doi.org/10.1038/nrd.2017.243
Pardi, N., Tuyishime, S., Muramatsu, H., Kariko, K., Mui, B. L., Tam, Y. K., Madden, T. D., Hope, M. J., & Weissman, D. (2015). Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J Control Release, 217, 345-351. https://doi.org/10.1016/j.jconrel.2015.08.007
Parham, P. (2015). The immune system (Fourth edition. ed.). W. W. Norton & Company.
Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J. L., Perez Marc, G., Moreira, E. D., Zerbini, C., Bailey, R., Swanson, K. A., Roychoudhury, S., Koury, K., Li, P., Kalina, W. V., Cooper, D., Frenck, R. W., Jr., Hammitt, L. L., . . . Group, C. C. T. (2020). Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med, 383(27), 2603-2615. https://doi.org/10.1056/NEJMoa2034577
Reichmuth, A. M., Oberli, M. A., Jaklenec, A., Langer, R., & Blankschtein, D. (2016). mRNA vaccine delivery using lipid nanoparticles. Ther Deliv, 7(5), 319-334. https://doi.org/10.4155/tde-2016-0006
Sabnis, S., Kumarasinghe, E. S., Salerno, T., Mihai, C., Ketova, T., Senn, J. J., Lynn, A., Bulychev, A., McFadyen, I., Chan, J., Almarsson, O., Stanton, M. G., & Benenato, K. E. (2018). A Novel Amino Lipid Series for mRNA Delivery: Improved Endosomal Escape and Sustained Pharmacology and Safety in Non-human Primates. Mol Ther, 26(6), 1509-1519. https://doi.org/10.1016/j.ymthe.2018.03.010
Sadoff, J., Gray, G., Vandebosch, A., Cardenas, V., Shukarev, G., Grinsztejn, B., Goepfert, P. A., Truyers, C., Van Dromme, I., Spiessens, B., Vingerhoets, J., Custers, J., Scheper, G., Robb, M. L., Treanor, J., Ryser, M. F., Barouch, D. H., Swann, E., Marovich, M. A., . . . Group, E. S. (2022). Final Analysis of Efficacy and Safety of Single-Dose Ad26.COV2.S. N Engl J Med, 386(9), 847-860. https://doi.org/10.1056/NEJMoa2117608
Salvatori, G., Luberto, L., Maffei, M., Aurisicchio, L., Roscilli, G., Palombo, F., & Marra, E. (2020). SARS-CoV-2 SPIKE PROTEIN: an optimal immunological target for vaccines. J Transl Med, 18(1), 222. https://doi.org/10.1186/s12967-020-02392-y
Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A., & Li, F. (2020). Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A, 117(21), 11727-11734. https://doi.org/10.1073/pnas.2003138117
Tanriover, M. D., Doganay, H. L., Akova, M., Guner, H. R., Azap, A., Akhan, S., Kose, S., Erdinc, F. S., Akalin, E. H., Tabak, O. F., Pullukcu, H., Batum, O., Simsek Yavuz, S., Turhan, O., Yildirmak, M. T., Koksal, I., Tasova, Y., Korten, V., Yilmaz, G., . . . CoronaVac Study, G. (2021). Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet, 398(10296), 213-222. https://doi.org/10.1016/S0140-6736(21)01429-X
Voysey, M., Costa Clemens, S. A., Madhi, S. A., Weckx, L. Y., Folegatti, P. M., Aley, P. K., Angus, B., Baillie, V. L., Barnabas, S. L., Bhorat, Q. E., Bibi, S., Briner, C., Cicconi, P., Clutterbuck, E. A., Collins, A. M., Cutland, C. L., Darton, T. C., Dheda, K., Dold, C., . . . Oxford, C. V. T. G. (2021). Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet, 397(10277), 881-891. https://doi.org/10.1016/S0140-6736(21)00432-3
Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell, 183(6), 1735. https://doi.org/10.1016/j.cell.2020.11.032
Wang, C., Zheng, X., Gai, W., Zhao, Y., Wang, H., Wang, H., Feng, N., Chi, H., Qiu, B., Li, N., Wang, T., Gao, Y., Yang, S., & Xia, X. (2017). MERS-CoV virus-like particles produced in insect cells induce specific humoural and cellular imminity in rhesus macaques. Oncotarget, 8(8), 12686-12694. https://doi.org/10.18632/oncotarget.8475
Wang, F., Kream, R. M., & Stefano, G. B. (2020). An Evidence Based Perspective on mRNA-SARS-CoV-2 Vaccine Development. Med Sci Monit, 26, e924700. https://doi.org/10.12659/MSM.924700
Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K. Y., Wang, Q., Zhou, H., Yan, J., & Qi, J. (2020). Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell, 181(4), 894-904 e899. https://doi.org/10.1016/j.cell.2020.03.045
Wang, Z., Schmidt, F., Weisblum, Y., Muecksch, F., Barnes, C. O., Finkin, S., Schaefer-Babajew, D., Cipolla, M., Gaebler, C., Lieberman, J. A., Oliveira, T. Y., Yang, Z., Abernathy, M. E., Huey-Tubman, K. E., Hurley, A., Turroja, M., West, K. A., Gordon, K., Millard, K. G., . . . Nussenzweig, M. C. (2021). mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature, 592(7855), 616-622. https://doi.org/10.1038/s41586-021-03324-6
Warren, L., Manos, P. D., Ahfeldt, T., Loh, Y. H., Li, H., Lau, F., Ebina, W., Mandal, P. K., Smith, Z. D., Meissner, A., Daley, G. Q., Brack, A. S., Collins, J. J., Cowan, C., Schlaeger, T. M., & Rossi, D. J. (2010). Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 7(5), 618-630. https://doi.org/10.1016/j.stem.2010.08.012
World Health Organization. (2020a). Novel Coronavirus (2019-nCoV) Situation Report – 22. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200211-sitrep-22-ncov.pdf
World Health Organization. (2020b). Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV). https://www.who.int/news/item/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov)
World Health Organization. (2022, Jul 3). WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int/
Wrobel, A. G., Benton, D. J., Xu, P., Roustan, C., Martin, S. R., Rosenthal, P. B., Skehel, J. J., & Gamblin, S. J. (2020). SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nat Struct Mol Biol, 27(8), 763-767. https://doi.org/10.1038/s41594-020-0468-7
Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., Hu, Y., Tao, Z. W., Tian, J. H., Pei, Y. Y., Yuan, M. L., Zhang, Y. L., Dai, F. H., Liu, Y., Wang, Q. M., Zheng, J. J., Xu, L., Holmes, E. C., & Zhang, Y. Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265-269. https://doi.org/10.1038/s41586-020-2008-3
Xu, X., Chen, P., Wang, J., Feng, J., Zhou, H., Li, X., Zhong, W., & Hao, P. (2020). Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci, 63(3), 457-460. https://doi.org/10.1007/s11427-020-1637-5
Yang, Z. Y., Kong, W. P., Huang, Y., Roberts, A., Murphy, B. R., Subbarao, K., & Nabel, G. J. (2004). A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature, 428(6982), 561-564. https://doi.org/10.1038/nature02463
Zangi, L., Lui, K. O., von Gise, A., Ma, Q., Ebina, W., Ptaszek, L. M., Spater, D., Xu, H., Tabebordbar, M., Gorbatov, R., Sena, B., Nahrendorf, M., Briscoe, D. M., Li, R. A., Wagers, A. J., Rossi, D. J., Pu, W. T., & Chien, K. R. (2013). Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat Biotechnol, 31(10), 898-907. https://doi.org/10.1038/nbt.2682
Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., Chen, H. D., Chen, J., Luo, Y., Guo, H., Jiang, R. D., Liu, M. Q., Chen, Y., Shen, X. R., Wang, X., . . . Shi, Z. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270-273. https://doi.org/10.1038/s41586-020-2012-7
Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., Tan, W., China Novel Coronavirus, I., & Research, T. (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med, 382(8), 727-733. https://doi.org/10.1056/NEJMoa2001017
Huang, Kathy. (2022, Jun 9). 莫德納推新型追加劑!二價疫苗更能抗Omicron。基因線上。https://geneonline.news/moderna-omicron-booster/
孚創雲端(2022a)。全文資訊。https://helpcenter.inquartik.com/zh-hk/%E5%85%A8%E6%96%87%E8%B3%87%E8%A8%8A
孚創雲端(2022b)。專利文獻數據範圍。https://app.patentcloud.com/data-status.html?__hstc=92158149.bb12c559382a96cc47aa8195cee8afd2.1657575509348.1658091894174.1658138250601.6&__hssc=92158149.4.1658281984375&__hsfp=1808647293&_gl=1*ourpmn*_ga*NTgyNDI5NjcuMTY1NzU3NTUwOQ..*_ga_GTLMQEG9VF*MTY1ODI5MzEzNS40NS4xLjE2NTgyOTMzMjkuMA..&_ga=2.109879686.284098141.1658042089-58242967.1657575509
張玄竺、廖月娟、鍾榕芳、黃瑜安(譯)(2022)。疫苗商戰:新冠危機下AZ、BNT、輝瑞、莫德納、嬌生、Novavax的生死競賽。臺北市:天下文化。 (Gregory Zuckerman, 2021)
陳秉訓(2014)。台灣醫院的台灣專利申請行為之分析。臺北科技大學學報,46(1),47-61。
陳達仁、黃慕萱(2018)。專利資訊檢索、分析與策略。華泰文化。
郭妍希(2021年05月21日)。莫德納考慮赴亞洲製造疫苗!CEO:已開始接洽日企。MoneyDJ新聞。https://www.moneydj.com/kmdj/news/newsviewer.aspx?a=6fca31b6-1b74-452f-ac10-03d475c53fb5
楊智傑(2014)。專利法。新學林。
葉士緯、洪菁蔓、周光宇(2016)。我國導入臨時申請案制度之可行性探討。智慧財產權月刊,205,40-64。
經濟部智慧財產局(2022)。專利審查基準彙編(111年7月1日施行版)。
劉國讚(2021)。國際專利分析與布局。元照。
謝銘洋(2004)。智慧財產權之基礎理論。翰蘆圖書。
zh_TW