學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

  • No doi shows Citation Infomation
題名 糖質體學資料探勘與自動化分析
Data Mining and Automated Analysis in Glycomics
作者 曾偉綱
Kang, Tseng Wei
貢獻者 張家銘
chang, jia-ming
曾偉綱
Tseng Wei Kang
關鍵詞 人工智慧
資料探勘
質譜儀
機器學習
分子結構預測
Artificial Intelligence
Data Mining
Mass Spectrometry
Machine Learning
Molecular Structure Prediction
日期 2024
上傳時間 1-Mar-2024 13:41:06 (UTC+8)
摘要 本研究致力於透過液相層析串聯質譜(LC-MS/MS)自動識別與分析醣鏈結構。應用資料探勘和機器學習技術,我們分析了斑馬魚腦與卵巢組織的數據集。相較於人工分析,我們的方法顯著提高了從龐大數據中定位樣本的效率,證明了其可行性。特別是,我們的方法大幅縮短了生物學家進行分析的時間,將原本需要30小時的任務縮減至幾秒內完成。這一成就強調了我們方法提升效率的潛力。最終,我們驗證了隨機森林模型在此問題上為各類別提供了最合適的模型,並具有跨組織樣本識別能力。它能有效識別訓練數據中未出現的組織中的醣鏈,證明了這一工具的實用應用性。總之,這項研究為深入理解和分析質譜儀產生的醣數據提供了一種快速且實用的工具,為未來研究的應用和方法的改進開辟了新的途徑。
This study focused on automatically identifying and analyzing glycan structures based on liquid chromatography/tandem mass spectrometry (LC-MS/MS). By applying data mining and machine learning techniques, we analyzed the zebrafish Brain and Ovary tissue datasets. Our methods enhanced the efficiency of targeting samples from vast data compared to human efforts, thus demonstrating their viability. Specifically, our approach has significantly expedited the time-consuming analysis process for a biologist, reducing tasks that traditionally took 30 hours to mere seconds. This achievement underscores the efficiency-enhancing potential of our method. Ultimately, we have validated that the Random Forest model in this problem offers a generally most suitable model for various categories and possesses cross-tissue sample identification capabilities. It can effectively recognize glycans in tissues not present in the training data, proving the practical applicability of this tool. In summary, the research provides a rapid and pragmatic tool for a deeper understanding and analysis of glycan data produced by mass spectrometers, promising new avenues for future research application and refinement of this method.
參考文獻 1. Interpreting Mass Spectra Retrieved January 2, 2024, from Spectrahttps://chem.libretexts.org/Courses/Athabasca_University/Chemistry_350 %3A_Organic_Chemistry_I/12%3A_Structure_Determination- _Mass_Spectrometry_and_Infrared_Spectroscopy/12.02%3A_Interpreting_Mass_Spectra 2. Urban, J., Jin, C., Thomsson, K. A., Karlsson, N. G., Ives, C. M., Fadda, E., & Bojar, D. (2023). Predicting glycan structure from tandem mass spectrometry via deep learning. bioRxiv. https://doi.org/10.1101/2023.06.13.544793 3. Burkholz, R., Quackenbush, J., & Bojar, D. (2021). Using graph convolutional neural networks to learn a representation for glycans. Elsevier, Volume 35, Issue 11, 15 June 2021, 109251. 4. weka.classifiers.rules OneR Retrieved July 26, 2023, from https://weka.sourceforge.io/doc.dev/weka/classifiers/rules/OneR.html 5. Glycoworkbench. (n.d.). Retrieved July 26, 2023, from https://code.google.com/archive/p/glycoworkbench/ 6. Ceroni, A., Maass, K., Geyer, H., Geyer, R., Dell, A., Haslam, SM. GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. Journal of Proteome Research. 2008 Apr;7(4):1650-9. doi: 10.1021/pr7008252. Epub 2008 Mar 1. PMID: 18311910. https://pubmed.ncbi.nlm.nih.gov/18311910/ 7. Varki, A., Cummings, R. D., Esko, J. D., Stanley, P., Hart, G. W., Aebi, M., Darvill, A. G., Kinoshita, T., Packer, N. H., Prestegard, J. H., Schnaar, R. L., & Seeberger, P. H. (2015). Essentials of Glycobiology. Cold Spring Harbor Laboratory Press. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4104780/
描述 碩士
國立政治大學
資訊科學系
108753122
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0108753122
資料類型 thesis
dc.contributor.advisor 張家銘zh_TW
dc.contributor.advisor chang, jia-mingen_US
dc.contributor.author (Authors) 曾偉綱zh_TW
dc.contributor.author (Authors) Tseng Wei Kangen_US
dc.creator (作者) 曾偉綱zh_TW
dc.creator (作者) Kang, Tseng Weien_US
dc.date (日期) 2024en_US
dc.date.accessioned 1-Mar-2024 13:41:06 (UTC+8)-
dc.date.available 1-Mar-2024 13:41:06 (UTC+8)-
dc.date.issued (上傳時間) 1-Mar-2024 13:41:06 (UTC+8)-
dc.identifier (Other Identifiers) G0108753122en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/150165-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學系zh_TW
dc.description (描述) 108753122zh_TW
dc.description.abstract (摘要) 本研究致力於透過液相層析串聯質譜(LC-MS/MS)自動識別與分析醣鏈結構。應用資料探勘和機器學習技術,我們分析了斑馬魚腦與卵巢組織的數據集。相較於人工分析,我們的方法顯著提高了從龐大數據中定位樣本的效率,證明了其可行性。特別是,我們的方法大幅縮短了生物學家進行分析的時間,將原本需要30小時的任務縮減至幾秒內完成。這一成就強調了我們方法提升效率的潛力。最終,我們驗證了隨機森林模型在此問題上為各類別提供了最合適的模型,並具有跨組織樣本識別能力。它能有效識別訓練數據中未出現的組織中的醣鏈,證明了這一工具的實用應用性。總之,這項研究為深入理解和分析質譜儀產生的醣數據提供了一種快速且實用的工具,為未來研究的應用和方法的改進開辟了新的途徑。zh_TW
dc.description.abstract (摘要) This study focused on automatically identifying and analyzing glycan structures based on liquid chromatography/tandem mass spectrometry (LC-MS/MS). By applying data mining and machine learning techniques, we analyzed the zebrafish Brain and Ovary tissue datasets. Our methods enhanced the efficiency of targeting samples from vast data compared to human efforts, thus demonstrating their viability. Specifically, our approach has significantly expedited the time-consuming analysis process for a biologist, reducing tasks that traditionally took 30 hours to mere seconds. This achievement underscores the efficiency-enhancing potential of our method. Ultimately, we have validated that the Random Forest model in this problem offers a generally most suitable model for various categories and possesses cross-tissue sample identification capabilities. It can effectively recognize glycans in tissues not present in the training data, proving the practical applicability of this tool. In summary, the research provides a rapid and pragmatic tool for a deeper understanding and analysis of glycan data produced by mass spectrometers, promising new avenues for future research application and refinement of this method.en_US
dc.description.tableofcontents Table of Contents 1. Introduction 1 1.1 Glycomics 1 1.2 Tandem Mass Spectrometry 1 1.4 Automated Approach to Glycomics3 2. Related work 4 3. Method 6 3.1 Datasets 6 3.2 Tools 9 3.3 Data Exploration 10 3.4 Evaluation Metrics 12 4. Data Processing 13 4.1 Feature Selection 13 4.2 Mass Error Calibration 14 4.3 Applying Biological Knowledge-based Formulas 16 4.4 Log Normalization 17 5. Results 18 5.1 Rule-based Model 18 5.2 OneR Model 20 5.3 Model Selection 23 5.4 Random Forest 24 6. Conclusion 29 References 30zh_TW
dc.format.extent 1935747 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0108753122en_US
dc.subject (關鍵詞) 人工智慧zh_TW
dc.subject (關鍵詞) 資料探勘zh_TW
dc.subject (關鍵詞) 質譜儀zh_TW
dc.subject (關鍵詞) 機器學習zh_TW
dc.subject (關鍵詞) 分子結構預測zh_TW
dc.subject (關鍵詞) Artificial Intelligenceen_US
dc.subject (關鍵詞) Data Miningen_US
dc.subject (關鍵詞) Mass Spectrometryen_US
dc.subject (關鍵詞) Machine Learningen_US
dc.subject (關鍵詞) Molecular Structure Predictionen_US
dc.title (題名) 糖質體學資料探勘與自動化分析zh_TW
dc.title (題名) Data Mining and Automated Analysis in Glycomicsen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 1. Interpreting Mass Spectra Retrieved January 2, 2024, from Spectrahttps://chem.libretexts.org/Courses/Athabasca_University/Chemistry_350 %3A_Organic_Chemistry_I/12%3A_Structure_Determination- _Mass_Spectrometry_and_Infrared_Spectroscopy/12.02%3A_Interpreting_Mass_Spectra 2. Urban, J., Jin, C., Thomsson, K. A., Karlsson, N. G., Ives, C. M., Fadda, E., & Bojar, D. (2023). Predicting glycan structure from tandem mass spectrometry via deep learning. bioRxiv. https://doi.org/10.1101/2023.06.13.544793 3. Burkholz, R., Quackenbush, J., & Bojar, D. (2021). Using graph convolutional neural networks to learn a representation for glycans. Elsevier, Volume 35, Issue 11, 15 June 2021, 109251. 4. weka.classifiers.rules OneR Retrieved July 26, 2023, from https://weka.sourceforge.io/doc.dev/weka/classifiers/rules/OneR.html 5. Glycoworkbench. (n.d.). Retrieved July 26, 2023, from https://code.google.com/archive/p/glycoworkbench/ 6. Ceroni, A., Maass, K., Geyer, H., Geyer, R., Dell, A., Haslam, SM. GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. Journal of Proteome Research. 2008 Apr;7(4):1650-9. doi: 10.1021/pr7008252. Epub 2008 Mar 1. PMID: 18311910. https://pubmed.ncbi.nlm.nih.gov/18311910/ 7. Varki, A., Cummings, R. D., Esko, J. D., Stanley, P., Hart, G. W., Aebi, M., Darvill, A. G., Kinoshita, T., Packer, N. H., Prestegard, J. H., Schnaar, R. L., & Seeberger, P. H. (2015). Essentials of Glycobiology. Cold Spring Harbor Laboratory Press. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4104780/zh_TW