學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

  • No doi shows Citation Infomation
題名 IEEE 802.16與802.11e整合環境的服務品質保證
QoS Guarantee for IEEE 802.16 Integrating with 802.11e
作者 張志華
Chang, Chih-Hua
貢獻者 蔡子傑
Tsai, Tzu-Chieh
張志華
Chang, Chih-Hua
關鍵詞 服務品質
馬可夫鍊
令牌桶
QoS
Markov Chain
Token Bucket
日期 2007
上傳時間 17-Sep-2009 14:02:23 (UTC+8)
摘要 802.16與802.11e均有提供服務品質(QoS),但是其MAC並不相同,為了達到QoS的保證,我們使用馬可夫鍊(Markov Chain)模型分析在不同連線數量時802.11e EDCA的延遲時間(delay time)。然後,我們可以再利用允入控制(CAC)機制限制連線的數量以保證延遲時間的需求,並使用令牌桶(Token Bucket)機制,在滿足延遲及頻寬的需求下控制輸出流量,在我們的令牌桶機制中可以依照頻寬需求的變化自動調整令牌(Token)產生速率,最後使用封包丟棄機制提升吞吐量(throughput)。
  在提出我們的方法後,我們使用Qualnet模擬器驗證延遲時間、封包丟棄率及吞吐量,結果表示我們所提出的方法在三方面都有明顯的改進。
IEEE 802.16 and 802.11e both provide Quality of Service (QoS), but the MAC of betweens is different. Ensuring the QoS guarantee, we use a Markov Chain model to analyze the 802.11e EDCA delay time under variance number of connections. Therefore, we can employ a CAC mechanism constraining the number of connections to guarantee the delay requirement. Further, considering the delay requirement and the bandwidth, we use a Token Bucket mechanism to throttle the traffic output that ensures the delay and bandwidth to be satisfied. And our Token Bucket mechanism can tune the token rate automatically by bandwidth requirement. Finally, we use the Packet Drop mechanism to improve throughput.
After my methodology, we validate the delay, packet drop rate and throughput by simulator Qualnet. We have significant improvement in delay, drop rate, and throughput.
參考文獻 [1] IEEE, “Wireless LAN medium access control (MAC) and physical layer (PHY) specification”, IEEE Standard 802.11, June 1999
[2] IEEE, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specification: High speed Physical Layer (PHY) extension in the 2.4 GHz band”, IEEE Standard 802.11b, September 1999
[3] IEEE, “Wireless LAN medium access control (MAC) and physical layer (PHY) specification: High-speed Physical Layer extension in the 5 GHz band”, IEEE Standard 802.11a, September 1999
[4] IEEE, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Further Higher-Speed Physical Layer Extension in the 2.4 GHz Band”, IEEE Standard 802.11g, January 2003
[5] Kitti Wongthavarawat, and Aura Ganz, “Packet scheduling for QoS support in IEEE 802.16 broadband wireless access systems”, International Journal of Communication Systems, vol. 16, issue 1, February 2003, pp. 81-96
[6] Giuseppe Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function” IEEE Journal on Selected Area in Communication, V18, N3, March 2000
[7] HaitaoWu, Yong Peng, Keping Long, Shiduan Cheng, Jian Ma, “Performance of Reliable Transport Protocol over IEEE 802.11 Wireless LAN: Analysis and Enhancement”, IEEE Infocom’02, New York, June 2002
[8] Bo Li, Roberto Battiti, “Achieving Maximum Throughput and Service Differentiation by Enhancing the IEEE 802.11 MAC Protocol”, Wireless On-Demand Network Systems 2004, LNCS 2928, pp. 285-300, January 2004
[9] Jun Zhao, Zihua Guo, Qian Zhang, Wenwu Zhu, “Performance Study of MAC for Service Differentiation in IEEE 802.11” IEEE Globecom’02, November 2002
[10] Hua Zhu, Imrich Chlamtac, “An Analytical Model for IEEE 802.11e EDCF Differential Services”, ICCCN’03, October 2003
[11] Tzu-Chieh Tsai, and Ming-Ju Wu, "An Analytical Model for IEEE 802.11e EDCA", in IEEE 2005 International Conference on Communications (ICC 2005 Wireless Networking), 16-20 May, 2005, Seoul, Korea. pp. 3474 - 3478.(ISSN: 0536-1486, EI)
[12] Chi-Hong Jiang, and Tzu-Chieh Tsai, "Token Bucket Based CAC and Packet Scheduling for IEEE 802.16 Broadband Wireless Access Networks", CCNC2006, Special Session on Multimedia and QoS in Wireless Networks, MP1-02-3, Jan 8-10, 2006, Las Vegas, USA.(EI)
[13] Tzu-Chieh Tsai and Chuan-Yin Wang, "Routing and Admission Control in IEEE 802.16 Distributed Mesh Networks", in IEEE Fourth International Conference on Wireless and Optical Communications Networks" (WOCN 2007), July 2, 3 and 4, 2007, Singapore. (IEEE Catalog Number: 07EX1696, ISBN: 1-4244-1005-3, Library of Congress: 2007920880), (Engineering Index (EI) and EI Compendex).
描述 碩士
國立政治大學
資訊科學學系
94753009
96
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0094753009
資料類型 thesis
dc.contributor.advisor 蔡子傑zh_TW
dc.contributor.advisor Tsai, Tzu-Chiehen_US
dc.contributor.author (Authors) 張志華zh_TW
dc.contributor.author (Authors) Chang, Chih-Huaen_US
dc.creator (作者) 張志華zh_TW
dc.creator (作者) Chang, Chih-Huaen_US
dc.date (日期) 2007en_US
dc.date.accessioned 17-Sep-2009 14:02:23 (UTC+8)-
dc.date.available 17-Sep-2009 14:02:23 (UTC+8)-
dc.date.issued (上傳時間) 17-Sep-2009 14:02:23 (UTC+8)-
dc.identifier (Other Identifiers) G0094753009en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/32677-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學學系zh_TW
dc.description (描述) 94753009zh_TW
dc.description (描述) 96zh_TW
dc.description.abstract (摘要) 802.16與802.11e均有提供服務品質(QoS),但是其MAC並不相同,為了達到QoS的保證,我們使用馬可夫鍊(Markov Chain)模型分析在不同連線數量時802.11e EDCA的延遲時間(delay time)。然後,我們可以再利用允入控制(CAC)機制限制連線的數量以保證延遲時間的需求,並使用令牌桶(Token Bucket)機制,在滿足延遲及頻寬的需求下控制輸出流量,在我們的令牌桶機制中可以依照頻寬需求的變化自動調整令牌(Token)產生速率,最後使用封包丟棄機制提升吞吐量(throughput)。
  在提出我們的方法後,我們使用Qualnet模擬器驗證延遲時間、封包丟棄率及吞吐量,結果表示我們所提出的方法在三方面都有明顯的改進。
zh_TW
dc.description.abstract (摘要) IEEE 802.16 and 802.11e both provide Quality of Service (QoS), but the MAC of betweens is different. Ensuring the QoS guarantee, we use a Markov Chain model to analyze the 802.11e EDCA delay time under variance number of connections. Therefore, we can employ a CAC mechanism constraining the number of connections to guarantee the delay requirement. Further, considering the delay requirement and the bandwidth, we use a Token Bucket mechanism to throttle the traffic output that ensures the delay and bandwidth to be satisfied. And our Token Bucket mechanism can tune the token rate automatically by bandwidth requirement. Finally, we use the Packet Drop mechanism to improve throughput.
After my methodology, we validate the delay, packet drop rate and throughput by simulator Qualnet. We have significant improvement in delay, drop rate, and throughput.
en_US
dc.description.tableofcontents CHAPTER 1 Introduction 1
1.1. Background 3
1.1.1. Token Bucket Mechanism 3
1.1.2. The IEEE 802.11 Standard 4
1.1.3. The IEEE 802.11e Standard 5
1.1.4. The IEEE 802.16 Standard 9
1.2. Motivation 13
1.3. Organization 14
CHAPTER 2 Related Work 15
2.1. Markov Chain Studies about 802.11e 15
2.2. Token Bucket and Call Admission Control about 802.16 18
CHAPTER 3 IEEE 802.11e EDCA Markov Chain Model 22
3.1. Model Assumption 23
3.2. Model Introduction 23
3.3. Markov Chain State 26
3.4. Transition Probability Matrix 27
3.5. Delay, Throughput and Packet Drop rate Calculation 33
3.6. Model Validation 34
3.6.1. 802.11e MAC Delay 36
3.6.2. 802.11e Packet Drop rate & Throughput 38
CHAPTER 4 Improvement Mechanism 40
4.1. Call Admission Control (CAC) 40
4.1.1. Delay requirement 40
4.1.2. Bandwidth requirement 41
4.2. Token Bucket Mechanism 42
4.2.1. Token Bucket Parameters 42
4.2.2. Token Rate and Bucket Size Initialize 44
4.2.3. Token Rate and Bucket Size Tuning 44
4.3. Packet Drop Mechanism 47
CHAPTER 5 Simulation 48
5.1. Delay 49
5.2. Packet Drop rate 51
5.3. Throughput 53
CHAPTER 6 Conclusions and Future Work 55
References 56
zh_TW
dc.format.extent 83878 bytes-
dc.format.extent 93923 bytes-
dc.format.extent 20958 bytes-
dc.format.extent 38175 bytes-
dc.format.extent 237274 bytes-
dc.format.extent 222176 bytes-
dc.format.extent 187805 bytes-
dc.format.extent 80332 bytes-
dc.format.extent 72867 bytes-
dc.format.extent 23764 bytes-
dc.format.extent 34346 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0094753009en_US
dc.subject (關鍵詞) 服務品質zh_TW
dc.subject (關鍵詞) 馬可夫鍊zh_TW
dc.subject (關鍵詞) 令牌桶zh_TW
dc.subject (關鍵詞) QoSen_US
dc.subject (關鍵詞) Markov Chainen_US
dc.subject (關鍵詞) Token Bucketen_US
dc.title (題名) IEEE 802.16與802.11e整合環境的服務品質保證zh_TW
dc.title (題名) QoS Guarantee for IEEE 802.16 Integrating with 802.11een_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] IEEE, “Wireless LAN medium access control (MAC) and physical layer (PHY) specification”, IEEE Standard 802.11, June 1999zh_TW
dc.relation.reference (參考文獻) [2] IEEE, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specification: High speed Physical Layer (PHY) extension in the 2.4 GHz band”, IEEE Standard 802.11b, September 1999zh_TW
dc.relation.reference (參考文獻) [3] IEEE, “Wireless LAN medium access control (MAC) and physical layer (PHY) specification: High-speed Physical Layer extension in the 5 GHz band”, IEEE Standard 802.11a, September 1999zh_TW
dc.relation.reference (參考文獻) [4] IEEE, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Further Higher-Speed Physical Layer Extension in the 2.4 GHz Band”, IEEE Standard 802.11g, January 2003zh_TW
dc.relation.reference (參考文獻) [5] Kitti Wongthavarawat, and Aura Ganz, “Packet scheduling for QoS support in IEEE 802.16 broadband wireless access systems”, International Journal of Communication Systems, vol. 16, issue 1, February 2003, pp. 81-96zh_TW
dc.relation.reference (參考文獻) [6] Giuseppe Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function” IEEE Journal on Selected Area in Communication, V18, N3, March 2000zh_TW
dc.relation.reference (參考文獻) [7] HaitaoWu, Yong Peng, Keping Long, Shiduan Cheng, Jian Ma, “Performance of Reliable Transport Protocol over IEEE 802.11 Wireless LAN: Analysis and Enhancement”, IEEE Infocom’02, New York, June 2002zh_TW
dc.relation.reference (參考文獻) [8] Bo Li, Roberto Battiti, “Achieving Maximum Throughput and Service Differentiation by Enhancing the IEEE 802.11 MAC Protocol”, Wireless On-Demand Network Systems 2004, LNCS 2928, pp. 285-300, January 2004zh_TW
dc.relation.reference (參考文獻) [9] Jun Zhao, Zihua Guo, Qian Zhang, Wenwu Zhu, “Performance Study of MAC for Service Differentiation in IEEE 802.11” IEEE Globecom’02, November 2002zh_TW
dc.relation.reference (參考文獻) [10] Hua Zhu, Imrich Chlamtac, “An Analytical Model for IEEE 802.11e EDCF Differential Services”, ICCCN’03, October 2003zh_TW
dc.relation.reference (參考文獻) [11] Tzu-Chieh Tsai, and Ming-Ju Wu, "An Analytical Model for IEEE 802.11e EDCA", in IEEE 2005 International Conference on Communications (ICC 2005 Wireless Networking), 16-20 May, 2005, Seoul, Korea. pp. 3474 - 3478.(ISSN: 0536-1486, EI)zh_TW
dc.relation.reference (參考文獻) [12] Chi-Hong Jiang, and Tzu-Chieh Tsai, "Token Bucket Based CAC and Packet Scheduling for IEEE 802.16 Broadband Wireless Access Networks", CCNC2006, Special Session on Multimedia and QoS in Wireless Networks, MP1-02-3, Jan 8-10, 2006, Las Vegas, USA.(EI)zh_TW
dc.relation.reference (參考文獻) [13] Tzu-Chieh Tsai and Chuan-Yin Wang, "Routing and Admission Control in IEEE 802.16 Distributed Mesh Networks", in IEEE Fourth International Conference on Wireless and Optical Communications Networks" (WOCN 2007), July 2, 3 and 4, 2007, Singapore. (IEEE Catalog Number: 07EX1696, ISBN: 1-4244-1005-3, Library of Congress: 2007920880), (Engineering Index (EI) and EI Compendex).zh_TW