學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

  • No doi shows Citation Infomation
題名 瑞特氏症模式小鼠的運動障礙與紋狀體特性之表型分析
Phenotypical analysis of motor behaviors and striatal characteristics in mouse models of Rett Syndrome
作者 蘇三華
Su, San Hua
貢獻者 廖文霖
蘇三華
Su, San Hua
關鍵詞 紋狀體
第二型甲基CpG結合蛋白
瑞特氏症
自閉症
運動障礙
striatum
MeCP2
Rett syndrome
autism
motor dysfunction
日期 2010
上傳時間 12-Apr-2012 14:12:30 (UTC+8)
摘要 瑞特氏症(Rett syndrome, RTT)為第二型甲基化CPG結合蛋白(2methyl-CpG binding protein 2, MeCP2)基因發生突變所造成的神經發育疾病,其症狀包含了嚴重的運動障礙及自閉傾向等特徵。由於紋狀體(striatum)為運動控制的重要腦區,我們假設RTT的運動障礙主要為紋狀體的功能異常所造成,故利用RTT模式小鼠來研究紋狀體是否為RTT運動障礙的致病原因。利用敞箱試驗(open field test)及加速滾輪測試(accelerating rotarod task)結果發現,Mecp2基因剔除小鼠的活動力明顯下降,並伴隨有運動協調能力的缺失。以免疫組織染色法及西方點墨法分別標定紋狀體中的mu-opioid receptor及calbindin蛋白,發現二者表現量均有明顯下降,然而表現parvalbumin的中間神經元細胞數目卻大量增加。我們發現在紋狀體中多巴胺D2受體的表現量顯著增加,但多巴胺合成酶tyrosine hydroxylase與多巴胺訊號傳遞下游分子DARPP-32蛋白並沒有明顯減少。為了更進一步確認紋狀體的致病角色,我們利用特定在紋狀體中缺少MeCP2的「Mecp2條件缺失小鼠」,觀察其運動行為的改變。結果發現,Mecp2條件缺失小鼠不管是在活動力或是運動學習上都表現出和Mecp2基因剔除小鼠相似的運動障礙,顯示紋狀體所調控的正常活動力及運動學習能力皆需要MeCP2的參與。我們接著進一步探討是否擁有完整MeCP2表現的紋狀體就足以執行正常的運動功能。當Mecp2基因剔除小鼠的紋狀體重新表現MeCP2(即「Mecp2條件回復小鼠」),MeCP2缺失所造成的運動障礙可被回復到接近野生型小鼠運動能力的正常水準。顯示紋狀體中MeCP2的存在為正常運動控制的充要條件。在以cyclin-dependent kinase-like 5 (Cdkl5)突變小鼠研究MeCP2的磷酸化是否會影響到運動行為,發現Cdkl5突變小鼠在出生早期及成年時期皆存在與Mecp2基因剔除小鼠一致的運動協調能力缺失。免疫組織染色及西方點墨法結果顯示,Cdkl5突變小鼠的紋狀體中mu-opioid receptor表現量有明顯下降,但parvalbumin的中間神經元數目並無改變,而在大腦皮質中多巴胺轉運子DAT1蛋白表現量明顯上升。CDKL5突變造成與RTT相似症狀的原因還須更進一步的探討。綜上所述,本研究為「紋狀體異常可能為RTT運動障礙的主要致病原因」提供動物模式的實驗證據,並提供了一個新的觀點用於未來治療RTT或防止其症狀的惡化。
參考文獻 Abrahams BS, Geschwind DH (2008) Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 9:341-355.
Airaksinen MS, Eilers J, Garaschuk O, Thoenen H, Konnerth A, Meyer M (1997) Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. Proc Natl Acad Sci U S A 94:1488-1493.
Amaral D, Dawson G, Geschwind D (2011) Autism Spectrum Disorders: Chapter 22 Motor Functioning and Dyspraxia in Autism Spectrum Disorders. New York: Oxford.
Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185-188.
Archer HL, Evans J, Edwards S, Colley J, Newbury-Ecob R, O`Callaghan F, Huyton M, O`Regan M, Tolmie J, Sampson J, Clarke A, Osborne J (2006) CDKL5 mutations cause infantile spasms, early onset seizures, and severe mental retardation in female patients. J Med Genet 43:729-734.
Armstrong D, Dunn JK, Antalffy B, Trivedi R (1995) Selective dendritic alterations in the cortex of Rett syndrome. J Neuropathol Exp Neurol 54:195-201.
Armstrong DD (2005) Neuropathology of Rett syndrome. J Child Neurol 20:747-753.
Balleine BW, Liljeholm M, Ostlund SB (2009) The integrative function of the basal ganglia in instrumental conditioning. Behav Brain Res 199:43-52.
Bapat S, Galande S (2005) Association by guilt: identification of DLX5 as a target for MeCP2 provides a molecular link between genomic imprinting and Rett syndrome. Bioessays 27:676-680.
Bauman ML, Kemper TL, Arin DM (1995a) Microscopic observations of the brain in Rett syndrome. Neuropediatrics 26:105-108.
Bauman ML, Kemper TL, Arin DM (1995b) Pervasive neuroanatomic abnormalities of the brain in three cases of Rett`s syndrome. Neurology 45:1581-1586.
Nicolson R, Szatmari P (2003) Genetic and neurodevelopmental influences in autistic disorder. Can J Psychiatry 48:526-537.
Ouimet CC, Miller PE, Hemmings HC, Jr., Walaas SI, Greengard P (1984) DARPP-32, a dopamine- and adenosine 3`:5`-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunocytochemical localization. J Neurosci 4:111-124.
Panayotis N, Pratte M, Borges-Correia A, Ghata A, Villard L, Roux JC (2011) Morphological and functional alterations in the substantia nigra pars compacta of the Mecp2-null mouse. Neurobiol Dis 41:385-397.
Peca J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, Lascola CD, Fu Z, Feng G (2011) Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472:437-442.
Pert CB, Snyder SH (1973) Opiate receptor: demonstration in nervous tissue. Science 179:1011-1014.
Rubchinsky LL, Kopell N, Sigvardt KA (2003) Modeling facilitation and inhibition of competing motor programs in basal ganglia subthalamic nucleus-pallidal circuits. Proc Natl Acad Sci U S A 100:14427-14432.
Samaco RC, Fryer JD, Ren J, Fyffe S, Chao HT, Sun Y, Greer JJ, Zoghbi HY, Neul JL (2008) A partial loss of function allele of methyl-CpG-binding protein 2 predicts a human neurodevelopmental syndrome. Hum Mol Genet 17:1718-1727.
Santos M, Silva-Fernandes A, Oliveira P, Sousa N, Maciel P (2007) Evidence for abnormal early development in a mouse model of Rett syndrome. Genes Brain Behav 6:277-286.
Scala E, Ariani F, Mari F, Caselli R, Pescucci C, Longo I, Meloni I, Giachino D, Bruttini M, Hayek G, Zappella M, Renieri A (2005) CDKL5/STK9 is mutated in Rett syndrome variant with infantile spasms. J Med Genet 42:103-107.
Segawa M (2005) Early motor disturbances in Rett syndrome and its pathophysiological importance. Brain Dev 27 Suppl 1:S54-S58.
Shahbazian M, Young J, Yuva-Paylor L, Spencer C, Antalffy B, Noebels J, Armstrong D, Paylor R, Zoghbi H (2002a) Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron 35:243-254.
Shahbazian MD, Antalffy B, Armstrong DL, Zoghbi HY (2002b) Insight into Rett syndrome: MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Hum Mol Genet 11:115-124.
Stenman J, Toresson H, Campbell K (2003) Identification of two distinct progenitor populations in the lateral ganglionic eminence: implications for striatal and olfactory bulb neurogenesis. J Neurosci 23:167-174.
Stone WL, Ousley OY, Littleford CD (1997) Motor imitation in young children with autism: what`s the object? J Abnorm Child Psychol 25:475-485.
Sun Z, Wang HB, Deng YP, Lei WL, Xie JP, Meade CA, Del Mar N, Goldowitz D, Reiner A (2005)
79
Increased calbindin-D28k immunoreactivity in striatal projection neurons of R6/2 Huntington`s disease transgenic mice. Neurobiol Dis 20:907-917.
Surmeier DJ, Ding J, Day M, Wang Z, Shen W (2007) D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30:228-235.
Tao J, Van Esch H, Hagedorn-Greiwe M, Hoffmann K, Moser B, Raynaud M, Sperner J, Fryns JP, Schwinger E, Gecz J, Ropers HH, Kalscheuer VM (2004) Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5/STK9) gene are associated with severe neurodevelopmental retardation. Am J Hum Genet 75:1149-1154.
Tepper JM, Bolam JP (2004) Functional diversity and specificity of neostriatal interneurons. Curr Opin Neurobiol 14:685-692.
van der Kooy D, Fishell G (1987) Neuronal birthdate underlies the development of striatal compartments. Brain Res 401:155-161.
Wang H, Cuzon VC, Pickel VM (2003) Postnatal development of mu-opioid receptors in the rat caudate-putamen nucleus parallels asymmetric synapse formation. Neuroscience 118:695-708.
Wang Y, Dye CA, Sohal V, Long JE, Estrada RC, Roztocil T, Lufkin T, Deisseroth K, Baraban SC, Rubenstein JL (2010) Dlx5 and Dlx6 regulate the development of parvalbumin-expressing cortical interneurons. J Neurosci 30:5334-5345.
Waterhouse L (2008) Autism overflows: increasing prevalence and proliferating theories. Neuropsychol Rev 18:273-286.
White NM, Hiroi N (1998) Preferential localization of self-stimulation sites in striosomes/patches in the rat striatum. Proc Natl Acad Sci U S A 95:6486-6491.
Wood L, Shepherd GM (2010) Synaptic circuit abnormalities of motor-frontal layer 2/3 pyramidal neurons in a mutant mouse model of Rett syndrome. Neurobiol Dis 38:281-287.
Young JI, Hong EP, Castle JC, Crespo-Barreto J, Bowman AB, Rose MF, Kang D, Richman R, Johnson JM, Berget S, Zoghbi HY (2005) Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc Natl Acad Sci U S A 102:17551-17558.
Zhao X, Leotta A, Kustanovich V, Lajonchere C, Geschwind DH, Law K, Law P, Qiu S, Lord C, Sebat J, Ye K, Wigler M (2007) A unified genetic theory for sporadic and inherited autism. Proc Natl Acad Sci U S A 104:12831-12836.
Zhou FM, Wilson CJ, Dani JA (2002) Cholinergic interneuron characteristics and nicotinic properties in the striatum. J Neurobiol 53:590-605.
Zhou Z, Hong EJ, Cohen S, Zhao WN, Ho HY, Schmidt L, Chen WG, Lin Y, Savner E, Griffith EC, Hu L, Steen JA, Weitz CJ, Greenberg ME (2006) Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron 52:255-269.
Bedard AC, Schulz KP, Cook EH, Jr., Fan J, Clerkin SM, Ivanov I, Halperin JM, Newcorn JH (2010) Dopamine transporter gene variation modulates activation of striatum in youth with ADHD. Neuroimage 53:935-942.
Belichenko NP, Belichenko PV, Mobley WC (2009) Evidence for both neuronal cell autonomous and nonautonomous effects of methyl-CpG-binding protein 2 in the cerebral cortex of female mice with Mecp2 mutation. Neurobiol Dis 34:71-77.
Bertani I, Rusconi L, Bolognese F, Forlani G, Conca B, De Monte L, Badaracco G, Landsberger N, Kilstrup-Nielsen C (2006) Functional consequences of mutations in CDKL5, an X-linked gene involved in infantile spasms and mental retardation. J Biol Chem 281:32048-32056.
Brown LL, Feldman SM, Smith DM, Cavanaugh JR, Ackermann RF, Graybiel AM (2002)
74
Differential metabolic activity in the striosome and matrix compartments of the rat striatum during natural behaviors. J Neurosci 22:305-314.
Bryson SE, Zwaigenbaum L, Brian J, Roberts W, Szatmari P, Rombough V, McDermott C (2007) A prospective case series of high-risk infants who developed autism. J Autism Dev Disord 37:12-24.
Cepeda C, Andre VM, Yamazaki I, Wu N, Kleiman-Weiner M, Levine MS (2008) Differential electrophysiological properties of dopamine D1 and D2 receptor-containing striatal medium-sized spiny neurons. Eur J Neurosci 27:671-682.
Cepeda C, Hurst RS, Calvert CR, Hernandez-Echeagaray E, Nguyen OK, Jocoy E, Christian LJ, Ariano MA, Levine MS (2003) Transient and progressive electrophysiological alterations in the corticostriatal pathway in a mouse model of Huntington`s disease. J Neurosci 23:961-969.
Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, Zoghbi HY (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320:1224-1229.
Chahrour M, Zoghbi HY (2007) The story of Rett syndrome: from clinic to neurobiology. Neuron 56:422-437.
Chao HT, Chen H, Samaco RC, Xue M, Chahrour M, Yoo J, Neul JL, Gong S, Lu HC, Heintz N, Ekker M, Rubenstein JL, Noebels JL, Rosenmund C, Zoghbi HY (2010) Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468:263-269.
Chapleau CA, Calfa GD, Lane MC, Albertson AJ, Larimore JL, Kudo S, Armstrong DL, Percy AK, Pozzo-Miller L (2009) Dendritic spine pathologies in hippocampal pyramidal neurons from Rett syndrome brain and after expression of Rett-associated MECP2 mutations. Neurobiol Dis 35:219-233.
Chen Q, Zhu YC, Yu J, Miao S, Zheng J, Xu L, Zhou Y, Li D, Zhang C, Tao J, Xiong ZQ (2010) CDKL5, a protein associated with rett syndrome, regulates neuronal morphogenesis via Rac1 signaling. J Neurosci 30:12777-12786.
Chen RZ, Akbarian S, Tudor M, Jaenisch R (2001) Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet 27:327-331.
Chen WG, Chang Q, Lin Y, Meissner A, West AE, Griffith EC, Jaenisch R, Greenberg ME (2003) Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302:885-889.
Coo H, Ouellette-Kuntz H, Lloyd JE, Kasmara L, Holden JJ, Lewis ME (2008) Trends in autism prevalence: diagnostic substitution revisited. J Autism Dev Disord 38:1036-1046.
D`Orlando C, Celio MR, Schwaller B (2002) Calretinin and calbindin D-28k, but not parvalbumin protect against glutamate-induced delayed excitotoxicity in transfected N18-RE 105 neuroblastoma-retina hybrid cells. Brain Res 945:181-190.
Dani VS, Chang Q, Maffei A, Turrigiano GG, Jaenisch R, Nelson SB (2005) Reduced cortical
75
activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. Proc Natl Acad Sci U S A 102:12560-12565.
Dewey D, Roy EA, Square-Storer PA, Hayden D (1988) Limb and oral praxic abilities of children with verbal sequencing deficits. Dev Med Child Neurol 30:743-751.
Eidelberg D, Surmeier DJ (2011) Brain networks in Huntington disease. J Clin Invest 121:484-492.
Eisenstat DD, Liu JK, Mione M, Zhong W, Yu G, Anderson SA, Ghattas I, Puelles L, Rubenstein JL (1999) DLX-1, DLX-2, and DLX-5 expression define distinct stages of basal forebrain differentiation. J Comp Neurol 414:217-237.
Evans JC, Archer HL, Colley JP, Ravn K, Nielsen JB, Kerr A, Williams E, Christodoulou J, Gecz J, Jardine PE, Wright MJ, Pilz DT, Lazarou L, Cooper DN, Sampson JR, Butler R, Whatley SD, Clarke AJ (2005) Early onset seizures and Rett-like features associated with mutations in CDKL5. Eur J Hum Genet 13:1113-1120.
Fienberg AA, Hiroi N, Mermelstein PG, Song W, Snyder GL, Nishi A, Cheramy A, O`Callaghan JP, Miller DB, Cole DG, Corbett R, Haile CN, Cooper DC, Onn SP, Grace AA, Ouimet CC, White FJ, Hyman SE, Surmeier DJ, Girault J, Nestler EJ, Greengard P (1998) DARPP-32: regulator of the efficacy of dopaminergic neurotransmission. Science 281:838-842.
Frank MJ (2005) Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J Cogn Neurosci 17:51-72.
Fujiyama F, Sohn J, Nakano T, Furuta T, Nakamura KC, Matsuda W, Kaneko T (2011) Exclusive and common targets of neostriatofugal projections of rat striosome neurons: a single neuron-tracing study using a viral vector. Eur J Neurosci 33:668-677.
Fyffe SL, Neul JL, Samaco RC, Chao HT, Ben-Shachar S, Moretti P, McGill BE, Goulding EH, Sullivan E, Tecott LH, Zoghbi HY (2008) Deletion of Mecp2 in Sim1-expressing neurons reveals a critical role for MeCP2 in feeding behavior, aggression, and the response to stress. Neuron 59:947-958.
Gemelli T, Berton O, Nelson ED, Perrotti LI, Jaenisch R, Monteggia LM (2006) Postnatal loss of methyl-CpG binding protein 2 in the forebrain is sufficient to mediate behavioral aspects of Rett syndrome in mice. Biol Psychiatry 59:468-476.
Georgel PT, Horowitz-Scherer RA, Adkins N, Woodcock CL, Wade PA, Hansen JC (2003) Chromatin compaction by human MeCP2. Assembly of novel secondary chromatin structures in the absence of DNA methylation. J Biol Chem 278:32181-32188.
Geschwind D (2007) Autism: searching for coherence. Biol Psychiatry 62:949-950.
Giacometti E, Luikenhuis S, Beard C, Jaenisch R (2007) Partial rescue of MeCP2 deficiency by postnatal activation of MeCP2. Proc Natl Acad Sci U S A 104:1931-1936.
Gill H, Cheadle JP, Maynard J, Fleming N, Whatley S, Cranston T, Thompson EM, Leonard H, Davis M, Christodoulou J, Skjeldal O, Hanefeld F, Kerr A, Tandy A, Ravine D, Clarke A (2003) Mutation analysis in the MECP2 gene and genetic counselling for Rett
76
syndrome. J Med Genet 40:380-384.
Gillberg C (1986) Autism and Rett syndrome: some notes on differential diagnosis. Am J Med Genet Suppl 1:127-131.
Gimenez-Amaya JM, Graybiel AM (1991) Modular organization of projection neurons in the matrix compartment of the primate striatum. J Neurosci 11:779-791.
Graybiel AM, Ragsdale CW, Jr., Yoneoka ES, Elde RP (1981) An immunohistochemical study of enkephalins and other neuropeptides in the striatum of the cat with evidence that the opiate peptides are arranged to form mosaic patterns in register with the striosomal compartments visible by acetylcholinesterase staining. Neuroscience 6:377-397.
Guy J, Gan J, Selfridge J, Cobb S, Bird A (2007) Reversal of neurological defects in a mouse model of Rett syndrome. Science 315:1143-1147.
Guy J, Hendrich B, Holmes M, Martin JE, Bird A (2001) A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet 27:322-326.
Hagberg B, Aicardi J, Dias K, Ramos O (1983) A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett`s syndrome: report of 35 cases. Ann Neurol 14:471-479.
Happe F, Ronald A, Plomin R (2006) Time to give up on a single explanation for autism. Nat Neurosci 9:1218-1220.
Hendrich B, Bird A (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18:6538-6547.
Hidaka N, Suemaru K, Li B, Araki H (2008) Effects of repeated electroconvulsive seizures on spontaneous alternation behavior and locomotor activity in rats. Biol Pharm Bull 31:1928-1932.
Horike S, Cai S, Miyano M, Cheng JF, Kohwi-Shigematsu T (2005) Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet 37:31-40.
Hosp JA, Pekanovic A, Rioult-Pedotti MS, Luft AR (2011) Dopaminergic projections from midbrain to primary motor cortex mediate motor skill learning. J Neurosci 31:2481-2487.
Hwang CK, Kim CS, Kim do K, Law PY, Wei LN, Loh HH (2010) Up-regulation of the mu-opioid receptor gene is mediated through chromatin remodeling and transcriptional factors in differentiated neuronal cells. Mol Pharmacol 78:58-68.
Ince E, Ciliax BJ, Levey AI (1997) Differential expression of D1 and D2 dopamine and m4 muscarinic acetylcholine receptor proteins in identified striatonigral neurons. Synapse 27:357-366.
Jellinger K, Armstrong D, Zoghbi HY, Percy AK (1988) Neuropathology of Rett syndrome. Acta Neuropathol 76:142-158.
Jugloff DG, Vandamme K, Logan R, Visanji NP, Brotchie JM, Eubanks JH (2008) Targeted delivery of an Mecp2 transgene to forebrain neurons improves the behavior of
77
female Mecp2-deficient mice. Hum Mol Genet 17:1386-1396.
Jung MY, Hof PR, Schmauss C (2000) Targeted disruption of the dopamine D(2) and D(3) receptor genes leads to different alterations in the expression of striatal calbindin-D(28k). Neuroscience 97:495-504.
Kawaguchi Y (1993) Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J Neurosci 13:4908-4923.
Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC (1995) Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci 18:527-535.
Kincaid AE, Wilson CJ (1996) Corticostriatal innervation of the patch and matrix in the rat neostriatum. J Comp Neurol 374:578-592.
Kline DD, Ogier M, Kunze DL, Katz DM (2010) Exogenous brain-derived neurotrophic factor rescues synaptic dysfunction in Mecp2-null mice. J Neurosci 30:5303-5310.
Kohwi M, Petryniak MA, Long JE, Ekker M, Obata K, Yanagawa Y, Rubenstein JL, Alvarez-Buylla A (2007) A subpopulation of olfactory bulb GABAergic interneurons is derived from Emx1- and Dlx5/6-expressing progenitors. J Neurosci 27:6878-6891.
Kreitzer AC, Malenka RC (2008) Striatal plasticity and basal ganglia circuit function. Neuron 60:543-554.
Lawhorn C, Smith DM, Brown LL (2009) Partial ablation of mu-opioid receptor rich striosomes produces deficits on a motor-skill learning task. Neuroscience 163:109-119.
Lawrence DG, Hopkins DA (1976) The development of motor control in the rhesus monkey: evidence concerning the role of corticomotoneuronal connections. Brain 99:235-254.
Mari F, Azimonti S, Bertani I, Bolognese F, Colombo E, Caselli R, Scala E, Longo I, Grosso S, Pescucci C, Ariani F, Hayek G, Balestri P, Bergo A, Badaracco G, Zappella M, Broccoli V, Renieri A, Kilstrup-Nielsen C, Landsberger N (2005) CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Hum Mol Genet 14:1935-1946.
Miralves J, Magdeleine E, Joly E (2007) Design of an improved set of oligonucleotide primers for genotyping MeCP2tm1.1Bird KO mice by PCR. Mol Neurodegener 2:16.
Miyano M, Horike S, Cai S, Oshimura M, Kohwi-Shigematsu T (2008) DLX5 expression is monoallelic and Dlx5 is up-regulated in the Mecp2-null frontal cortex. J Cell Mol Med 12:1188-1191.
Moss J, Howlin P (2009) Autism spectrum disorders in genetic syndromes: implications for diagnosis, intervention and understanding the wider autism spectrum disorder population. J Intellect Disabil Res 53:852-873.
Murphy P, Burnham WM (2003) The effect of kindled seizures on the locomotory behavior of Long-Evans rats. Exp Neurol 180:88-92.
Nan X, Campoy FJ, Bird A (1997) MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88:471-481.
78
描述 碩士
國立政治大學
神經科學研究所
98754001
99
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0098754001
資料類型 thesis
dc.contributor.advisor 廖文霖zh_TW
dc.contributor.author (Authors) 蘇三華zh_TW
dc.contributor.author (Authors) Su, San Huaen_US
dc.creator (作者) 蘇三華zh_TW
dc.creator (作者) Su, San Huaen_US
dc.date (日期) 2010en_US
dc.date.accessioned 12-Apr-2012 14:12:30 (UTC+8)-
dc.date.available 12-Apr-2012 14:12:30 (UTC+8)-
dc.date.issued (上傳時間) 12-Apr-2012 14:12:30 (UTC+8)-
dc.identifier (Other Identifiers) G0098754001en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/52637-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 神經科學研究所zh_TW
dc.description (描述) 98754001zh_TW
dc.description (描述) 99zh_TW
dc.description.abstract (摘要) 瑞特氏症(Rett syndrome, RTT)為第二型甲基化CPG結合蛋白(2methyl-CpG binding protein 2, MeCP2)基因發生突變所造成的神經發育疾病,其症狀包含了嚴重的運動障礙及自閉傾向等特徵。由於紋狀體(striatum)為運動控制的重要腦區,我們假設RTT的運動障礙主要為紋狀體的功能異常所造成,故利用RTT模式小鼠來研究紋狀體是否為RTT運動障礙的致病原因。利用敞箱試驗(open field test)及加速滾輪測試(accelerating rotarod task)結果發現,Mecp2基因剔除小鼠的活動力明顯下降,並伴隨有運動協調能力的缺失。以免疫組織染色法及西方點墨法分別標定紋狀體中的mu-opioid receptor及calbindin蛋白,發現二者表現量均有明顯下降,然而表現parvalbumin的中間神經元細胞數目卻大量增加。我們發現在紋狀體中多巴胺D2受體的表現量顯著增加,但多巴胺合成酶tyrosine hydroxylase與多巴胺訊號傳遞下游分子DARPP-32蛋白並沒有明顯減少。為了更進一步確認紋狀體的致病角色,我們利用特定在紋狀體中缺少MeCP2的「Mecp2條件缺失小鼠」,觀察其運動行為的改變。結果發現,Mecp2條件缺失小鼠不管是在活動力或是運動學習上都表現出和Mecp2基因剔除小鼠相似的運動障礙,顯示紋狀體所調控的正常活動力及運動學習能力皆需要MeCP2的參與。我們接著進一步探討是否擁有完整MeCP2表現的紋狀體就足以執行正常的運動功能。當Mecp2基因剔除小鼠的紋狀體重新表現MeCP2(即「Mecp2條件回復小鼠」),MeCP2缺失所造成的運動障礙可被回復到接近野生型小鼠運動能力的正常水準。顯示紋狀體中MeCP2的存在為正常運動控制的充要條件。在以cyclin-dependent kinase-like 5 (Cdkl5)突變小鼠研究MeCP2的磷酸化是否會影響到運動行為,發現Cdkl5突變小鼠在出生早期及成年時期皆存在與Mecp2基因剔除小鼠一致的運動協調能力缺失。免疫組織染色及西方點墨法結果顯示,Cdkl5突變小鼠的紋狀體中mu-opioid receptor表現量有明顯下降,但parvalbumin的中間神經元數目並無改變,而在大腦皮質中多巴胺轉運子DAT1蛋白表現量明顯上升。CDKL5突變造成與RTT相似症狀的原因還須更進一步的探討。綜上所述,本研究為「紋狀體異常可能為RTT運動障礙的主要致病原因」提供動物模式的實驗證據,並提供了一個新的觀點用於未來治療RTT或防止其症狀的惡化。zh_TW
dc.description.tableofcontents 誌謝 ..................................................................................................................I
     中文摘要 ..........................................................................................................II
     英文摘要 .........................................................................................................III
     目錄 ................................................................................................................IV
     圖次 ..............................................................................................................VIII
     縮寫對照表 ................................................................................................................IX
     第一章 緒論.................................................................................................. 01
     第一節 泛自閉症障礙 (Autism spectrum disorder, ASD)........................... 01
     一、ASD的病患存在運動障礙.................................................................. 01
     二、ASD具高度遺傳異質性...................................................................... 02
     第二節 瑞特氏症 (Rett Symdrome, RTT) .................................................. 02
     一、RTT的起源........................................................................................ 02
     二、RTT的症狀特徵................................................................................. 03
     三、RTT及自閉症 (Autism)之間的關聯.................................................... 03
     四、RTT的病源學..................................................................................... 04
     五、MeCP2蛋白....................................................................................... 04
     六、MECP2基因參與神經發育................................................................. 05
      七、瑞特氏症模式小鼠 (Mouse models of RTT) ...................................... 06
     八、非典型瑞特氏症 (Atypical Rett Syndrome) ....................................... 07
      第三節 運動控制的神經迴路....................................................................... 08
     一、基底核 (basal ganglia) ...................................................................... 08
      (一)直接路徑 (Direct pathway) ........................................................... 08
      (二)間接路徑 (Indirect pathway) …................................................... 09
      二、紋狀體 (striatum) .............................................................................. 09
      (一)紋狀體的細胞組成.......................................................................... 09
      (二)紋狀體的區間分隔 (compartmentalization)….............................. 11
      (三)紋狀體與疾病的關聯...................................................................... 11
     第四節 實驗目的與策略.............................................................................. 12
     第二章 材料與方法.................................................................................................. 14
      第一節 實驗動物......................................................................................... 14
      第二節 基因轉殖小鼠之基因型鑑定 (Genotypiing).................................... 14
     一、Genomic DNA之萃取........................................................................ 14
     二、Mecp2基因剔除小鼠之基因型鑑定.................................................... 14
     三、Cdkl5突變鼠之基因型鑑定................................................................. 15
     四、Dlx5/6-Cre基因轉殖鼠之基因型鑑定................................................. 15
     五、Flox-Mecp2基因轉殖鼠之基因型鑑定................................................ 16
     六、Flox-STOP基因轉殖鼠之基因型鑑定................................................. 16
      第三節 成年小鼠的行為測試.....……………................................................ 16
     一、敞箱試驗 (Open Field Test) .............................................................. 16
     二、加速滾輪測試 (Accelerating Rotarod Test)........................................ 17
     第四節 出生後幼鼠之行為測試 (perinatal behavior) ................................. 17
     一、平面翻正測試 (Surface Righting Test, SR)........................................ 17
      二、背地性翻轉測試 (Negative Geotaxis Test, NG)………….............................. 17
      三、抓繩試驗 (Wire Suspension Test, WS)……………….................................... 18
     第五節 免疫組織染色法 (Immunohistochemistry)............................................... 18
      一、腦組織的灌流製備與切片 .............................................................................. 18
     二、腦組織染色 ................................................................................................... 18
      三、免疫染色之定量分析...................................................................................... 19
      (一) MOR表現量分析.........................................................................................19
      (二)Calbindin+細胞計數………………..............................................................19
     (三) Parvalbumin+細胞計數……………........................................................... 20
     (四)TH及D32表現量分析…………….…......................................................... 20
     第六節 西方點墨法 (Western blot) ..................................................................... 20
     一、腦組織取樣.................................................................................................... 20
      二、腦組織蛋白質萃取......................................................................................... 20
     三、蛋白質濃度測定............................................................................................. 21
     四、西方點墨法.................................................................................................... 21
     五、西方點墨法之定量分析.................................................................................. 22
     第三章 結果 (Results)…………................................................................................ 23
     第一節 Mecp2基因剔除小鼠存在運動障礙............................................................ 23
     第二節Mecp2基因剔除小鼠之紋狀體中分子表現與細胞組成的改變...................... 27
     (一)Mecp2 基因剔除小鼠的紋狀體中mu opioid receptor表現量下降................. 27
     (二)Mecp2 基因剔除小鼠的紋狀體中Calbindin+神經細胞密度增加但表現
     量下降................................................................................................................. 29
     (三)Mecp2基因剔除小鼠表現parvalbumin的神經細胞數增加............................ 31
      (四)Mecp2基因剔除小鼠tyrosine hydroxylase (TH)表現量無明顯改變...............33
      (五)Mecp2基因剔除小鼠的紋狀體中D2R表現量明顯增加................................. 35
     (六)Mecp2基因剔除小鼠的紋狀體中DARPP-32 (D32)無明顯改變..................... 36
     第三節 Mecp2條件缺失小鼠... .............................................................................. 38
     第四節 Mecp2條件回復小鼠.................................................................................. 42
     第五節 Cdkl5突變小鼠的運動能力........................................................................ 47
     第六節 Cdkl5突變小鼠在出生後的運動能力.......................................................... 51
     第七節 Cdkl5突變小鼠之紋狀體中分子表現與細胞組成的改變............................. 54
     (一)Cdkl5突變小鼠的紋狀體中mu opioid receptor表現量明顯下降.................... 54
     (二)Cdkl5突變小鼠表現parvalbumin的神經細胞數目無明顯改變...................... 56
     (三)Cdkl5突變小鼠dopamine transporter (DAT1) 表現量在大腦皮質明顯上升.. 58
     (四)Cdkl5突變小鼠在MeCP2蛋白上絲胺酸421的磷酸化並無明顯改變.............59
     第四章 討論............................................................................................................... 60
     一、 RTT為一個好的模式來研究ASD存在的運動缺失........................................... 60
     二、Mecp2基因剔除小鼠存在活動力下降且運動協調能力缺失的現象.................... 61
     三、MeCP2的缺失造成紋狀體的分子表現異常及結構改變..................................... 61
     (一)MeCP2的缺失造成紋狀體的MOR表現減少................................................. 61
     (二) MeCP2的缺失造成紋狀體Calbindin+細胞數增加,但Calbindin蛋白質表現減少........................................................................................................................ 63
     (三)MeCP2的缺失造成紋狀體的Parvalbumin+細胞數增加................................ 64
     (四) MeCP2的缺失改變紋狀體的多巴胺神經傳遞系統的分子表現..................... 65
     四、紋狀體中MeCP2存在與否影響到運動的功能....................................................66
     五、Cdkl5突變小鼠的運動功能障礙........................................................................ 68
     六、Cdkl5的缺失造成紋狀體的分子表現異常.......................................................... 70
     第五章 結論................................................................................................................72
     參考文獻. .................................................................................................................. 73
     附錄一..........................................................................................................................X
     附錄二.........................................................................................................................XI
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0098754001en_US
dc.subject (關鍵詞) 紋狀體zh_TW
dc.subject (關鍵詞) 第二型甲基CpG結合蛋白zh_TW
dc.subject (關鍵詞) 瑞特氏症zh_TW
dc.subject (關鍵詞) 自閉症zh_TW
dc.subject (關鍵詞) 運動障礙zh_TW
dc.subject (關鍵詞) striatumen_US
dc.subject (關鍵詞) MeCP2en_US
dc.subject (關鍵詞) Rett syndromeen_US
dc.subject (關鍵詞) autismen_US
dc.subject (關鍵詞) motor dysfunctionen_US
dc.title (題名) 瑞特氏症模式小鼠的運動障礙與紋狀體特性之表型分析zh_TW
dc.title (題名) Phenotypical analysis of motor behaviors and striatal characteristics in mouse models of Rett Syndromeen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) Abrahams BS, Geschwind DH (2008) Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 9:341-355.zh_TW
dc.relation.reference (參考文獻) Airaksinen MS, Eilers J, Garaschuk O, Thoenen H, Konnerth A, Meyer M (1997) Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. Proc Natl Acad Sci U S A 94:1488-1493.zh_TW
dc.relation.reference (參考文獻) Amaral D, Dawson G, Geschwind D (2011) Autism Spectrum Disorders: Chapter 22 Motor Functioning and Dyspraxia in Autism Spectrum Disorders. New York: Oxford.zh_TW
dc.relation.reference (參考文獻) Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185-188.zh_TW
dc.relation.reference (參考文獻) Archer HL, Evans J, Edwards S, Colley J, Newbury-Ecob R, O`Callaghan F, Huyton M, O`Regan M, Tolmie J, Sampson J, Clarke A, Osborne J (2006) CDKL5 mutations cause infantile spasms, early onset seizures, and severe mental retardation in female patients. J Med Genet 43:729-734.zh_TW
dc.relation.reference (參考文獻) Armstrong D, Dunn JK, Antalffy B, Trivedi R (1995) Selective dendritic alterations in the cortex of Rett syndrome. J Neuropathol Exp Neurol 54:195-201.zh_TW
dc.relation.reference (參考文獻) Armstrong DD (2005) Neuropathology of Rett syndrome. J Child Neurol 20:747-753.zh_TW
dc.relation.reference (參考文獻) Balleine BW, Liljeholm M, Ostlund SB (2009) The integrative function of the basal ganglia in instrumental conditioning. Behav Brain Res 199:43-52.zh_TW
dc.relation.reference (參考文獻) Bapat S, Galande S (2005) Association by guilt: identification of DLX5 as a target for MeCP2 provides a molecular link between genomic imprinting and Rett syndrome. Bioessays 27:676-680.zh_TW
dc.relation.reference (參考文獻) Bauman ML, Kemper TL, Arin DM (1995a) Microscopic observations of the brain in Rett syndrome. Neuropediatrics 26:105-108.zh_TW
dc.relation.reference (參考文獻) Bauman ML, Kemper TL, Arin DM (1995b) Pervasive neuroanatomic abnormalities of the brain in three cases of Rett`s syndrome. Neurology 45:1581-1586.zh_TW
dc.relation.reference (參考文獻) Nicolson R, Szatmari P (2003) Genetic and neurodevelopmental influences in autistic disorder. Can J Psychiatry 48:526-537.zh_TW
dc.relation.reference (參考文獻) Ouimet CC, Miller PE, Hemmings HC, Jr., Walaas SI, Greengard P (1984) DARPP-32, a dopamine- and adenosine 3`:5`-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunocytochemical localization. J Neurosci 4:111-124.zh_TW
dc.relation.reference (參考文獻) Panayotis N, Pratte M, Borges-Correia A, Ghata A, Villard L, Roux JC (2011) Morphological and functional alterations in the substantia nigra pars compacta of the Mecp2-null mouse. Neurobiol Dis 41:385-397.zh_TW
dc.relation.reference (參考文獻) Peca J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, Lascola CD, Fu Z, Feng G (2011) Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472:437-442.zh_TW
dc.relation.reference (參考文獻) Pert CB, Snyder SH (1973) Opiate receptor: demonstration in nervous tissue. Science 179:1011-1014.zh_TW
dc.relation.reference (參考文獻) Rubchinsky LL, Kopell N, Sigvardt KA (2003) Modeling facilitation and inhibition of competing motor programs in basal ganglia subthalamic nucleus-pallidal circuits. Proc Natl Acad Sci U S A 100:14427-14432.zh_TW
dc.relation.reference (參考文獻) Samaco RC, Fryer JD, Ren J, Fyffe S, Chao HT, Sun Y, Greer JJ, Zoghbi HY, Neul JL (2008) A partial loss of function allele of methyl-CpG-binding protein 2 predicts a human neurodevelopmental syndrome. Hum Mol Genet 17:1718-1727.zh_TW
dc.relation.reference (參考文獻) Santos M, Silva-Fernandes A, Oliveira P, Sousa N, Maciel P (2007) Evidence for abnormal early development in a mouse model of Rett syndrome. Genes Brain Behav 6:277-286.zh_TW
dc.relation.reference (參考文獻) Scala E, Ariani F, Mari F, Caselli R, Pescucci C, Longo I, Meloni I, Giachino D, Bruttini M, Hayek G, Zappella M, Renieri A (2005) CDKL5/STK9 is mutated in Rett syndrome variant with infantile spasms. J Med Genet 42:103-107.zh_TW
dc.relation.reference (參考文獻) Segawa M (2005) Early motor disturbances in Rett syndrome and its pathophysiological importance. Brain Dev 27 Suppl 1:S54-S58.zh_TW
dc.relation.reference (參考文獻) Shahbazian M, Young J, Yuva-Paylor L, Spencer C, Antalffy B, Noebels J, Armstrong D, Paylor R, Zoghbi H (2002a) Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron 35:243-254.zh_TW
dc.relation.reference (參考文獻) Shahbazian MD, Antalffy B, Armstrong DL, Zoghbi HY (2002b) Insight into Rett syndrome: MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Hum Mol Genet 11:115-124.zh_TW
dc.relation.reference (參考文獻) Stenman J, Toresson H, Campbell K (2003) Identification of two distinct progenitor populations in the lateral ganglionic eminence: implications for striatal and olfactory bulb neurogenesis. J Neurosci 23:167-174.zh_TW
dc.relation.reference (參考文獻) Stone WL, Ousley OY, Littleford CD (1997) Motor imitation in young children with autism: what`s the object? J Abnorm Child Psychol 25:475-485.zh_TW
dc.relation.reference (參考文獻) Sun Z, Wang HB, Deng YP, Lei WL, Xie JP, Meade CA, Del Mar N, Goldowitz D, Reiner A (2005)zh_TW
dc.relation.reference (參考文獻) 79zh_TW
dc.relation.reference (參考文獻) Increased calbindin-D28k immunoreactivity in striatal projection neurons of R6/2 Huntington`s disease transgenic mice. Neurobiol Dis 20:907-917.zh_TW
dc.relation.reference (參考文獻) Surmeier DJ, Ding J, Day M, Wang Z, Shen W (2007) D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30:228-235.zh_TW
dc.relation.reference (參考文獻) Tao J, Van Esch H, Hagedorn-Greiwe M, Hoffmann K, Moser B, Raynaud M, Sperner J, Fryns JP, Schwinger E, Gecz J, Ropers HH, Kalscheuer VM (2004) Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5/STK9) gene are associated with severe neurodevelopmental retardation. Am J Hum Genet 75:1149-1154.zh_TW
dc.relation.reference (參考文獻) Tepper JM, Bolam JP (2004) Functional diversity and specificity of neostriatal interneurons. Curr Opin Neurobiol 14:685-692.zh_TW
dc.relation.reference (參考文獻) van der Kooy D, Fishell G (1987) Neuronal birthdate underlies the development of striatal compartments. Brain Res 401:155-161.zh_TW
dc.relation.reference (參考文獻) Wang H, Cuzon VC, Pickel VM (2003) Postnatal development of mu-opioid receptors in the rat caudate-putamen nucleus parallels asymmetric synapse formation. Neuroscience 118:695-708.zh_TW
dc.relation.reference (參考文獻) Wang Y, Dye CA, Sohal V, Long JE, Estrada RC, Roztocil T, Lufkin T, Deisseroth K, Baraban SC, Rubenstein JL (2010) Dlx5 and Dlx6 regulate the development of parvalbumin-expressing cortical interneurons. J Neurosci 30:5334-5345.zh_TW
dc.relation.reference (參考文獻) Waterhouse L (2008) Autism overflows: increasing prevalence and proliferating theories. Neuropsychol Rev 18:273-286.zh_TW
dc.relation.reference (參考文獻) White NM, Hiroi N (1998) Preferential localization of self-stimulation sites in striosomes/patches in the rat striatum. Proc Natl Acad Sci U S A 95:6486-6491.zh_TW
dc.relation.reference (參考文獻) Wood L, Shepherd GM (2010) Synaptic circuit abnormalities of motor-frontal layer 2/3 pyramidal neurons in a mutant mouse model of Rett syndrome. Neurobiol Dis 38:281-287.zh_TW
dc.relation.reference (參考文獻) Young JI, Hong EP, Castle JC, Crespo-Barreto J, Bowman AB, Rose MF, Kang D, Richman R, Johnson JM, Berget S, Zoghbi HY (2005) Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc Natl Acad Sci U S A 102:17551-17558.zh_TW
dc.relation.reference (參考文獻) Zhao X, Leotta A, Kustanovich V, Lajonchere C, Geschwind DH, Law K, Law P, Qiu S, Lord C, Sebat J, Ye K, Wigler M (2007) A unified genetic theory for sporadic and inherited autism. Proc Natl Acad Sci U S A 104:12831-12836.zh_TW
dc.relation.reference (參考文獻) Zhou FM, Wilson CJ, Dani JA (2002) Cholinergic interneuron characteristics and nicotinic properties in the striatum. J Neurobiol 53:590-605.zh_TW
dc.relation.reference (參考文獻) Zhou Z, Hong EJ, Cohen S, Zhao WN, Ho HY, Schmidt L, Chen WG, Lin Y, Savner E, Griffith EC, Hu L, Steen JA, Weitz CJ, Greenberg ME (2006) Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron 52:255-269.zh_TW
dc.relation.reference (參考文獻) Bedard AC, Schulz KP, Cook EH, Jr., Fan J, Clerkin SM, Ivanov I, Halperin JM, Newcorn JH (2010) Dopamine transporter gene variation modulates activation of striatum in youth with ADHD. Neuroimage 53:935-942.zh_TW
dc.relation.reference (參考文獻) Belichenko NP, Belichenko PV, Mobley WC (2009) Evidence for both neuronal cell autonomous and nonautonomous effects of methyl-CpG-binding protein 2 in the cerebral cortex of female mice with Mecp2 mutation. Neurobiol Dis 34:71-77.zh_TW
dc.relation.reference (參考文獻) Bertani I, Rusconi L, Bolognese F, Forlani G, Conca B, De Monte L, Badaracco G, Landsberger N, Kilstrup-Nielsen C (2006) Functional consequences of mutations in CDKL5, an X-linked gene involved in infantile spasms and mental retardation. J Biol Chem 281:32048-32056.zh_TW
dc.relation.reference (參考文獻) Brown LL, Feldman SM, Smith DM, Cavanaugh JR, Ackermann RF, Graybiel AM (2002)zh_TW
dc.relation.reference (參考文獻) 74zh_TW
dc.relation.reference (參考文獻) Differential metabolic activity in the striosome and matrix compartments of the rat striatum during natural behaviors. J Neurosci 22:305-314.zh_TW
dc.relation.reference (參考文獻) Bryson SE, Zwaigenbaum L, Brian J, Roberts W, Szatmari P, Rombough V, McDermott C (2007) A prospective case series of high-risk infants who developed autism. J Autism Dev Disord 37:12-24.zh_TW
dc.relation.reference (參考文獻) Cepeda C, Andre VM, Yamazaki I, Wu N, Kleiman-Weiner M, Levine MS (2008) Differential electrophysiological properties of dopamine D1 and D2 receptor-containing striatal medium-sized spiny neurons. Eur J Neurosci 27:671-682.zh_TW
dc.relation.reference (參考文獻) Cepeda C, Hurst RS, Calvert CR, Hernandez-Echeagaray E, Nguyen OK, Jocoy E, Christian LJ, Ariano MA, Levine MS (2003) Transient and progressive electrophysiological alterations in the corticostriatal pathway in a mouse model of Huntington`s disease. J Neurosci 23:961-969.zh_TW
dc.relation.reference (參考文獻) Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, Zoghbi HY (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320:1224-1229.zh_TW
dc.relation.reference (參考文獻) Chahrour M, Zoghbi HY (2007) The story of Rett syndrome: from clinic to neurobiology. Neuron 56:422-437.zh_TW
dc.relation.reference (參考文獻) Chao HT, Chen H, Samaco RC, Xue M, Chahrour M, Yoo J, Neul JL, Gong S, Lu HC, Heintz N, Ekker M, Rubenstein JL, Noebels JL, Rosenmund C, Zoghbi HY (2010) Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468:263-269.zh_TW
dc.relation.reference (參考文獻) Chapleau CA, Calfa GD, Lane MC, Albertson AJ, Larimore JL, Kudo S, Armstrong DL, Percy AK, Pozzo-Miller L (2009) Dendritic spine pathologies in hippocampal pyramidal neurons from Rett syndrome brain and after expression of Rett-associated MECP2 mutations. Neurobiol Dis 35:219-233.zh_TW
dc.relation.reference (參考文獻) Chen Q, Zhu YC, Yu J, Miao S, Zheng J, Xu L, Zhou Y, Li D, Zhang C, Tao J, Xiong ZQ (2010) CDKL5, a protein associated with rett syndrome, regulates neuronal morphogenesis via Rac1 signaling. J Neurosci 30:12777-12786.zh_TW
dc.relation.reference (參考文獻) Chen RZ, Akbarian S, Tudor M, Jaenisch R (2001) Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet 27:327-331.zh_TW
dc.relation.reference (參考文獻) Chen WG, Chang Q, Lin Y, Meissner A, West AE, Griffith EC, Jaenisch R, Greenberg ME (2003) Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302:885-889.zh_TW
dc.relation.reference (參考文獻) Coo H, Ouellette-Kuntz H, Lloyd JE, Kasmara L, Holden JJ, Lewis ME (2008) Trends in autism prevalence: diagnostic substitution revisited. J Autism Dev Disord 38:1036-1046.zh_TW
dc.relation.reference (參考文獻) D`Orlando C, Celio MR, Schwaller B (2002) Calretinin and calbindin D-28k, but not parvalbumin protect against glutamate-induced delayed excitotoxicity in transfected N18-RE 105 neuroblastoma-retina hybrid cells. Brain Res 945:181-190.zh_TW
dc.relation.reference (參考文獻) Dani VS, Chang Q, Maffei A, Turrigiano GG, Jaenisch R, Nelson SB (2005) Reduced corticalzh_TW
dc.relation.reference (參考文獻) 75zh_TW
dc.relation.reference (參考文獻) activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. Proc Natl Acad Sci U S A 102:12560-12565.zh_TW
dc.relation.reference (參考文獻) Dewey D, Roy EA, Square-Storer PA, Hayden D (1988) Limb and oral praxic abilities of children with verbal sequencing deficits. Dev Med Child Neurol 30:743-751.zh_TW
dc.relation.reference (參考文獻) Eidelberg D, Surmeier DJ (2011) Brain networks in Huntington disease. J Clin Invest 121:484-492.zh_TW
dc.relation.reference (參考文獻) Eisenstat DD, Liu JK, Mione M, Zhong W, Yu G, Anderson SA, Ghattas I, Puelles L, Rubenstein JL (1999) DLX-1, DLX-2, and DLX-5 expression define distinct stages of basal forebrain differentiation. J Comp Neurol 414:217-237.zh_TW
dc.relation.reference (參考文獻) Evans JC, Archer HL, Colley JP, Ravn K, Nielsen JB, Kerr A, Williams E, Christodoulou J, Gecz J, Jardine PE, Wright MJ, Pilz DT, Lazarou L, Cooper DN, Sampson JR, Butler R, Whatley SD, Clarke AJ (2005) Early onset seizures and Rett-like features associated with mutations in CDKL5. Eur J Hum Genet 13:1113-1120.zh_TW
dc.relation.reference (參考文獻) Fienberg AA, Hiroi N, Mermelstein PG, Song W, Snyder GL, Nishi A, Cheramy A, O`Callaghan JP, Miller DB, Cole DG, Corbett R, Haile CN, Cooper DC, Onn SP, Grace AA, Ouimet CC, White FJ, Hyman SE, Surmeier DJ, Girault J, Nestler EJ, Greengard P (1998) DARPP-32: regulator of the efficacy of dopaminergic neurotransmission. Science 281:838-842.zh_TW
dc.relation.reference (參考文獻) Frank MJ (2005) Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J Cogn Neurosci 17:51-72.zh_TW
dc.relation.reference (參考文獻) Fujiyama F, Sohn J, Nakano T, Furuta T, Nakamura KC, Matsuda W, Kaneko T (2011) Exclusive and common targets of neostriatofugal projections of rat striosome neurons: a single neuron-tracing study using a viral vector. Eur J Neurosci 33:668-677.zh_TW
dc.relation.reference (參考文獻) Fyffe SL, Neul JL, Samaco RC, Chao HT, Ben-Shachar S, Moretti P, McGill BE, Goulding EH, Sullivan E, Tecott LH, Zoghbi HY (2008) Deletion of Mecp2 in Sim1-expressing neurons reveals a critical role for MeCP2 in feeding behavior, aggression, and the response to stress. Neuron 59:947-958.zh_TW
dc.relation.reference (參考文獻) Gemelli T, Berton O, Nelson ED, Perrotti LI, Jaenisch R, Monteggia LM (2006) Postnatal loss of methyl-CpG binding protein 2 in the forebrain is sufficient to mediate behavioral aspects of Rett syndrome in mice. Biol Psychiatry 59:468-476.zh_TW
dc.relation.reference (參考文獻) Georgel PT, Horowitz-Scherer RA, Adkins N, Woodcock CL, Wade PA, Hansen JC (2003) Chromatin compaction by human MeCP2. Assembly of novel secondary chromatin structures in the absence of DNA methylation. J Biol Chem 278:32181-32188.zh_TW
dc.relation.reference (參考文獻) Geschwind D (2007) Autism: searching for coherence. Biol Psychiatry 62:949-950.zh_TW
dc.relation.reference (參考文獻) Giacometti E, Luikenhuis S, Beard C, Jaenisch R (2007) Partial rescue of MeCP2 deficiency by postnatal activation of MeCP2. Proc Natl Acad Sci U S A 104:1931-1936.zh_TW
dc.relation.reference (參考文獻) Gill H, Cheadle JP, Maynard J, Fleming N, Whatley S, Cranston T, Thompson EM, Leonard H, Davis M, Christodoulou J, Skjeldal O, Hanefeld F, Kerr A, Tandy A, Ravine D, Clarke A (2003) Mutation analysis in the MECP2 gene and genetic counselling for Rettzh_TW
dc.relation.reference (參考文獻) 76zh_TW
dc.relation.reference (參考文獻) syndrome. J Med Genet 40:380-384.zh_TW
dc.relation.reference (參考文獻) Gillberg C (1986) Autism and Rett syndrome: some notes on differential diagnosis. Am J Med Genet Suppl 1:127-131.zh_TW
dc.relation.reference (參考文獻) Gimenez-Amaya JM, Graybiel AM (1991) Modular organization of projection neurons in the matrix compartment of the primate striatum. J Neurosci 11:779-791.zh_TW
dc.relation.reference (參考文獻) Graybiel AM, Ragsdale CW, Jr., Yoneoka ES, Elde RP (1981) An immunohistochemical study of enkephalins and other neuropeptides in the striatum of the cat with evidence that the opiate peptides are arranged to form mosaic patterns in register with the striosomal compartments visible by acetylcholinesterase staining. Neuroscience 6:377-397.zh_TW
dc.relation.reference (參考文獻) Guy J, Gan J, Selfridge J, Cobb S, Bird A (2007) Reversal of neurological defects in a mouse model of Rett syndrome. Science 315:1143-1147.zh_TW
dc.relation.reference (參考文獻) Guy J, Hendrich B, Holmes M, Martin JE, Bird A (2001) A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet 27:322-326.zh_TW
dc.relation.reference (參考文獻) Hagberg B, Aicardi J, Dias K, Ramos O (1983) A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett`s syndrome: report of 35 cases. Ann Neurol 14:471-479.zh_TW
dc.relation.reference (參考文獻) Happe F, Ronald A, Plomin R (2006) Time to give up on a single explanation for autism. Nat Neurosci 9:1218-1220.zh_TW
dc.relation.reference (參考文獻) Hendrich B, Bird A (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18:6538-6547.zh_TW
dc.relation.reference (參考文獻) Hidaka N, Suemaru K, Li B, Araki H (2008) Effects of repeated electroconvulsive seizures on spontaneous alternation behavior and locomotor activity in rats. Biol Pharm Bull 31:1928-1932.zh_TW
dc.relation.reference (參考文獻) Horike S, Cai S, Miyano M, Cheng JF, Kohwi-Shigematsu T (2005) Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet 37:31-40.zh_TW
dc.relation.reference (參考文獻) Hosp JA, Pekanovic A, Rioult-Pedotti MS, Luft AR (2011) Dopaminergic projections from midbrain to primary motor cortex mediate motor skill learning. J Neurosci 31:2481-2487.zh_TW
dc.relation.reference (參考文獻) Hwang CK, Kim CS, Kim do K, Law PY, Wei LN, Loh HH (2010) Up-regulation of the mu-opioid receptor gene is mediated through chromatin remodeling and transcriptional factors in differentiated neuronal cells. Mol Pharmacol 78:58-68.zh_TW
dc.relation.reference (參考文獻) Ince E, Ciliax BJ, Levey AI (1997) Differential expression of D1 and D2 dopamine and m4 muscarinic acetylcholine receptor proteins in identified striatonigral neurons. Synapse 27:357-366.zh_TW
dc.relation.reference (參考文獻) Jellinger K, Armstrong D, Zoghbi HY, Percy AK (1988) Neuropathology of Rett syndrome. Acta Neuropathol 76:142-158.zh_TW
dc.relation.reference (參考文獻) Jugloff DG, Vandamme K, Logan R, Visanji NP, Brotchie JM, Eubanks JH (2008) Targeted delivery of an Mecp2 transgene to forebrain neurons improves the behavior ofzh_TW
dc.relation.reference (參考文獻) 77zh_TW
dc.relation.reference (參考文獻) female Mecp2-deficient mice. Hum Mol Genet 17:1386-1396.zh_TW
dc.relation.reference (參考文獻) Jung MY, Hof PR, Schmauss C (2000) Targeted disruption of the dopamine D(2) and D(3) receptor genes leads to different alterations in the expression of striatal calbindin-D(28k). Neuroscience 97:495-504.zh_TW
dc.relation.reference (參考文獻) Kawaguchi Y (1993) Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J Neurosci 13:4908-4923.zh_TW
dc.relation.reference (參考文獻) Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC (1995) Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci 18:527-535.zh_TW
dc.relation.reference (參考文獻) Kincaid AE, Wilson CJ (1996) Corticostriatal innervation of the patch and matrix in the rat neostriatum. J Comp Neurol 374:578-592.zh_TW
dc.relation.reference (參考文獻) Kline DD, Ogier M, Kunze DL, Katz DM (2010) Exogenous brain-derived neurotrophic factor rescues synaptic dysfunction in Mecp2-null mice. J Neurosci 30:5303-5310.zh_TW
dc.relation.reference (參考文獻) Kohwi M, Petryniak MA, Long JE, Ekker M, Obata K, Yanagawa Y, Rubenstein JL, Alvarez-Buylla A (2007) A subpopulation of olfactory bulb GABAergic interneurons is derived from Emx1- and Dlx5/6-expressing progenitors. J Neurosci 27:6878-6891.zh_TW
dc.relation.reference (參考文獻) Kreitzer AC, Malenka RC (2008) Striatal plasticity and basal ganglia circuit function. Neuron 60:543-554.zh_TW
dc.relation.reference (參考文獻) Lawhorn C, Smith DM, Brown LL (2009) Partial ablation of mu-opioid receptor rich striosomes produces deficits on a motor-skill learning task. Neuroscience 163:109-119.zh_TW
dc.relation.reference (參考文獻) Lawrence DG, Hopkins DA (1976) The development of motor control in the rhesus monkey: evidence concerning the role of corticomotoneuronal connections. Brain 99:235-254.zh_TW
dc.relation.reference (參考文獻) Mari F, Azimonti S, Bertani I, Bolognese F, Colombo E, Caselli R, Scala E, Longo I, Grosso S, Pescucci C, Ariani F, Hayek G, Balestri P, Bergo A, Badaracco G, Zappella M, Broccoli V, Renieri A, Kilstrup-Nielsen C, Landsberger N (2005) CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Hum Mol Genet 14:1935-1946.zh_TW
dc.relation.reference (參考文獻) Miralves J, Magdeleine E, Joly E (2007) Design of an improved set of oligonucleotide primers for genotyping MeCP2tm1.1Bird KO mice by PCR. Mol Neurodegener 2:16.zh_TW
dc.relation.reference (參考文獻) Miyano M, Horike S, Cai S, Oshimura M, Kohwi-Shigematsu T (2008) DLX5 expression is monoallelic and Dlx5 is up-regulated in the Mecp2-null frontal cortex. J Cell Mol Med 12:1188-1191.zh_TW
dc.relation.reference (參考文獻) Moss J, Howlin P (2009) Autism spectrum disorders in genetic syndromes: implications for diagnosis, intervention and understanding the wider autism spectrum disorder population. J Intellect Disabil Res 53:852-873.zh_TW
dc.relation.reference (參考文獻) Murphy P, Burnham WM (2003) The effect of kindled seizures on the locomotory behavior of Long-Evans rats. Exp Neurol 180:88-92.zh_TW
dc.relation.reference (參考文獻) Nan X, Campoy FJ, Bird A (1997) MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88:471-481.zh_TW
dc.relation.reference (參考文獻) 78zh_TW